Preface

End-to-end monitoring has received a tremendous amount of attention by the academic and industrial research communities for many years. Due to the "stateless" nature of the Internet, as well as the problems associated with collecting management information from inter-connected domains, the end-applications get more eager to observe and infer the characteristics of the network paths and services, without any network support. End-to-end monitoring is important to observe the dynamic network and service conditions in real-time and provide feedback information to applications or users to maintain seamless network operations. In the last few years, we have witnessed the creation of many new network technologies including peer-to-peer, overlay, content delivery networks, multicast, grid, ad-hoc and sensor networks. These emerging technologies require efficient end-to-end monitoring techniques to perform real-time resource adaptation, service restoration and dynamic network configuration. The end-to-end monitoring information is also important for network management tasks such as capacity planning, service tuning and provisioning, enforcement of service level agreement, detecting distributed attacks, and for adaptive network control protocols such as congestions/rate control, adaptive multimedia error concealment, and constrained-based routing in sensor and P2P networks.

Many challenges need to be addressed in order to provide efficient monitoring systems. First, the end-to-end monitoring must scale to large number of peers or service-points without causing significant overhead on the network bandwidth and the resources. Second, for on-line end-to-end monitoring, the process of information collection, filtering and analysis must be performed in a timely fashion to allow for reactive management actions. Third, the monitoring process itself has to be dynamic in the sense that the monitoring tasks can be automatically re-configured to match the changing network conditions and application target. Fourth, end-to-end monitoring systems must be capable of correlating events from distributed points in the network in order to observe the global network condition.

The IEEE International Workshop on End-to-End Monitoring Techniques and Services 2006 is the fourth in its series aimed at stimulating technical exchange in the merging field of monitoring networks and services. The IEEE E2EMON is an advanced workshop that attracts quality papers from various research communities. The aim of this workshop is to offer a forum for exploratory research and practical contributions from researchers all over the world, and to provide an intimate setting for discussion and debate through panels and group work.
The program this year covers a variety of research topics in the area of monitoring, including traffic monitoring and data mining, real-time monitoring, and path characteristics monitoring.

In closing, we would like to thank the members of the Program Committee and the reviewers who helped us put together this year’s program. We are also indebted to Rolf Stadler and Raouf Boutaba for generously providing their assistance in all the logistics of this workshop, and for James Won-Ki Hong for his help in producing these proceedings.

February 2006

Ehab Al-Shaer
Aiko Pras
Nevil Brownlee
Workshop Co-Chairs

Ehab Al-Shaer DePaul University, USA
Aiko Pras University of Twente, Netherlands
Nevil Brownlee The University of Auckland, New Zealand

Program Committee

Ahsan Habib University of California Berkeley
Aiko Pras University of Twente
Anees Shaikh IBM TJ Watson Research Center
Constantinos Dovrolis Georgia Tech
Danny Raz Technion
Dave Plonka University of Wisconsin
Dina Papagiannaki Intel Research
Ehab Al-Shaer DePaul University
Fulvio Risso Politecnico di Torino
Hani Jamjoom IBM Research
Henk Uijterwaal RIPE
Herbert Bos Vrije Universiteit Amsterdam
James Hong POSTECH
Joel Sommers University of Wisconsin
Jordi Domingo-Pascual University Polytechnic of Catalunya
Kamil Sarac The University of Texas at Dallas
Keith Ross Polytechnic University
Luca Deri ntop.org
M. Y. Sanadidi UCLA
Mark Crovella Boston University
Nevil Brownlee The University of Auckland
Olivier Festor LORIA - INRIA Lorraine
Pal Varga Budapest University of Technology and Economics
Philippe Owezarski LAAS-CNRS
Radu State LORIA - INRIA Lorraine
Raouf Boutaba University of Waterloo
Reza Rejaie University of Oregon
Simon Leinen Switch
Taesang Choi ETRI
Thomas Plagemann University of Oslo
Tony McGregor Waikato University
Reviewers

Ahsan Habib University of California Berkeley
Aiko Pras University of Twente
Anees Shaikh IBM TJ Watson Research Center
Cesar Marcondes UCLA
Constantinos Dovrolis Georgia Tech
Danny Raz Technion
Dave Plonka University of Wisconsin
Dina Papagiannaki Intel Research
Elah Al-Shaer DePaul University
Fulvio Risso Politecnico di Torino
Hani Jamjoom IBM Research
Henk Uijterwaal RIPE
Herbert Bos Vrije Universiteit Amsterdam
James Hong POSTECH
Joel Sommers University of Wisconsin
Jordi Domingo-Pascual University Politechnic of Catalunya
Kamil Sarac The University of Texas at Dallas
Keith Ross Polytechnic University
Luca Deri ntop.org
M. Y. Sanadidi UCLA
Mark Crovella Boston University
Matti Seikkinen University of Oslo
Nevil Brownlee The University of Auckland
Olivier Festor LORIA - INRIA Lorraine
Pal Varga Budapest University of Technology and Economics
Philippe Owezarski LAAS-CNRS
Radu State LORIA - INRIA Lorraine
Raouf Boutaba University of Waterloo
Reza Rejaie University of Oregon
Simon Leinen Switch
Taesang Choi ETRI
Thomas Plagemann University of Oslo
Tony McGregor Waikato University