Survival in a quasi-death process

Erik A. van Doorn

Department of Applied Mathematics
University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: e.a.vandoorn@utwente.nl

2 January 2007

Abstract. We consider a Markov chain in continuous time with an absorbing coffin state and a finite set S of transient states. When S is irreducible the limiting distribution of the chain as $t \to \infty$, conditional on survival up to time t, is known to equal the (unique) quasi-stationary distribution of the chain. We address the problem of generalizing this result to a setting in which S may be reducible, and obtain a complete solution if the eigenvalue with maximal real part of the generator of the (sub)Markov chain on S has multiplicity one. The result is applied to pure death processes and, more generally, to quasi-death processes.

Keywords and phrases: absorbing Markov chain, death process, limiting conditional distribution, quasi-stationary distribution, survival-time distribution

2000 Mathematics Subject Classification: Primary 60J27
1 Introduction

In the interesting papers [2] and [3] Aalen and Gjessing provide a new explanation for the shape of hazard rate functions in survival analysis. They propose to model survival times as sojourn times of stochastic processes in a set S of transient states until they escape from S to an absorbing coffin state. This “process point of view” entails that (in the words of Aalen and Gjessing) “the shape of the hazard rate is created in a balance between two forces: the attraction of the absorbing state and the general diffusion within the transient space”. As a result the shape of the hazard rate is determined by the interaction of the initial distribution and the distribution over S known as the quasi-stationary distribution of the process. Similar ideas have been put forward independently by Steinsaltz and Evans [15].

Aalen and Gjessing discuss several examples of relevant stochastic processes, including finite-state Markov chains with an absorbing state, the setting of the present paper. A survival-time distribution in this setting is known as a phase-type distribution (see, for example, Aalen [1]). In their analysis and examples Aalen and Gjessing restrict themselves to chains for which the set S of transient states constitutes a single class, arguing that “irreducibility is important when considering quasistationary distributions”. As we shall see, however, there are no compelling technical reasons for imposing this restriction. Moreover, in [3, Section 8] Aalen and Gjessing allude to a bottle-neck phenomenon that may occur when S is reducible, making it even desirable to investigate what happens in this case. We note that Proposition 1 in [15], while formulated quite generally, seems to be entirely correct only if one assumes S to be irreducible.

From a modelling point of view there is another argument for extending the analysis to reducible sets S. Namely, if the status of an individual before evanescence is represented by the state of a transient Markov chain, it seems reasonable to allow for the possibility that some transitions are irreversible, reflecting the fact that some real-life processes such as ageing are irreversible.

The main aim of the present paper is to provide the tools for hazard rate analysis, by characterizing survival-time distributions and identifying limiting
conditional distributions and quasi-stationary distributions, in the setting of
finite Markov chains with an absorbing state and a transient space S that may
be reducible. In Section 2 we present some general results, which are applied
in Section 3 to pure death processes. The latter results are then generalized in
Section 4 to quasi-death processes, which may be viewed as death processes in
which the sojourn time in each state has a phase-type distribution.

2 Absorbing Markov chains

Consider a continuous-time Markov chain $X := \{X(t), \ t \geq 0\}$ on a state space
$\{0\} \cup S$ consisting of an absorbing state 0 and a finite set of transient states
$S := \{1, 2, \ldots, n\}$. The generator of X then takes the form
\[
\begin{pmatrix}
0 & 0 \\
q^T & Q
\end{pmatrix},
\]
where
\[
q = -1Q^T > 0.
\]
Here 0 and 1 are row vectors of zeros and ones, respectively, superscript T
denotes transpose, and strict inequality for vectors indicates strict inequality
in at least one component. Since all states in S are transient, state 0 is acces-
sible from any state in S. Hence, whichever the initial state, the process will
eventually escape from S into the absorbing state 0 with probability one.

We write $P_i(.)$ for the probability measure of the process when $X(0) = i,$
and let $Pw(.) := \sum_i w_i P_i(.)$ for any vector $w = (w_1, w_2, \ldots, w_n)$ representing
a distribution over S. Also, $Pij(.) := P_i(X(.) = j)$. It is easy to verify (see,
for example, Kijima [8, Section 4.6]) that the matrix $P(t) := (Pij(t), \ i, j \in S)$
satisfies
\[
P(t) = e^{Qt} := \sum_{k=0}^{\infty} \frac{Q^k}{k!} t^k, \quad t \geq 0.
\]
By $T := \sup\{t \geq 0 : X(t) \in S\}$ we denote the survival time (or absorption time)
of X, the random variable representing the time at which escape from
occurs. In what follows we are interested in the limiting distribution of the residual survival time conditional on survival up to time \(t \), that is,

\[
\lim_{t \to \infty} P_w(T \leq t + s \mid T > t), \quad s \geq 0,
\]

and in the limiting distribution of \(X(t) \) conditional on survival up to time \(t \), that is,

\[
\lim_{t \to \infty} P_w(X(t) = j \mid T > t), \quad j \in S,
\]

where \(w \) is any initial distribution over \(S \).

Let us first suppose that \(S \) is irreducible, that is, constitutes a single communicating class. In this case \(Q \) has a unique eigenvalue with maximal real part, which we denote by \(-\alpha\). It is well known (see, for example, Seneta [14, Theorem 2.6]) that \(\alpha \) is real and positive, and that the associated left and right eigenvectors \(u = (u_1, u_2, \ldots, u_n) \) and \(v = (v_1, v_2, \ldots, v_n) \) can be chosen strictly positive componentwise. It will also be convenient to normalize \(u \) and \(v \) such that

\[
u_1^T = 1 \quad \text{and} \quad uv^T = 1.
\]

It then follows (see Mandl [12]) that the transition probabilities \(P_{ij}(t) \) satisfy

\[
\lim_{t \to \infty} e^{\alpha t} P_{ij}(t) = v_i u_j, \quad i, j \in S,
\]

which explains why \(\alpha \) is often referred to as the decay parameter of \(X \). We shall show later (Theorem 4) that (6) actually holds true in a more general setting.

Since \(uQ = -\alpha u \), we have \(uQ^k = (-\alpha)^k u \) for all \(k \), and hence

\[
u P(t) = \sum_{k=0}^{\infty} \frac{uQ^k}{k!} t^k = e^{-\alpha t} u, \quad t \geq 0,
\]

that is

\[
\mathbb{P}_u(X(t) = j) = e^{-\alpha t} u_j, \quad j \in S, \quad t \geq 0.
\]

Since \(\mathbb{P}_u(T > t) = \mathbb{P}_u(X(t) \in S) = e^{-\alpha t} \), it follows that for all \(t \geq 0 \)

\[
\mathbb{P}_u(T > t + s \mid T > t) = e^{-\alpha s}, \quad s \geq 0.
\]
Moreover, \(u \) is a quasi-stationary distribution of \(X \) in the sense that for all \(t \geq 0 \)
\[
\mathbb{P}_u(X(t) = j \mid T > t) = u_j, \quad j \in S,
\]
that is, the distribution of \(X(t) \) conditional on absorption not yet having taken place at time \(t \) is constant over \(t \) when \(u \) is the initial distribution. Darroch and Seneta [5] have shown that similar results hold true in the limit as \(t \to \infty \) when the initial distribution differs from \(u \). Namely, for any initial distribution \(w \) one has
\[
\lim_{t \to \infty} \mathbb{P}_w(T > t + s \mid T > t) = e^{-\alpha s}, \quad s \geq 0,
\]
and
\[
\lim_{t \to \infty} \mathbb{P}_w(X(t) = j \mid T > t) = u_j, \quad j \in S.
\]
So when all states in \(S \) communicate the limits (3) and (4) are determined by the largest eigenvalue of \(Q \) and the corresponding left eigenvector.

This result can be generalized, at least in principle, to a setting in which \(S \) consists of more than one class. Indeed, suppose that \(S \) consists of communicating classes \(S_1, S_2, \ldots, S_c \), and let \(Q_k \) be the submatrix of \(Q \) corresponding to the states in \(S_k \). Obviously, the set of eigenvalues of \(Q \) is precisely the union of the sets of eigenvalues of the individual \(Q_k \)'s. So, if we denote the (unique) eigenvalue with maximal real part of \(Q_k \) by \(-\alpha_k\) (so that \(\alpha_k \) is real and positive), and let \(\alpha := \min_k \alpha_k \), then \(-\alpha\) is the eigenvalue of \(Q \) with maximal real part. Evidently, \(-\alpha\) may be degenerate, but we will restrict ourselves to settings in which \(-\alpha\) has algebraic (and hence geometric) multiplicity one. Under this condition then there exist, up to constant factors, unique left and right eigenvectors \(u \) and \(v \) corresponding to \(-\alpha\). It follows from Theorem I* ofDebreu and Herstein [6] (by an argument similar to the proof of [14, Theorem 2.6]) that we may choose \(u > 0, v > 0 \) and \(u1^T = 1 \), but \(u \) and \(v \) are not necessarily positive componentwise.

In the present setting (7), and hence (8) and (9), retain their validity. Letting
\[
a(\alpha) := \arg \min_k \alpha_k,
\]
we note that $S_a(\alpha)$ must be accessible from u (that is, accessible from a state i such that $u_i > 0$). Indeed, α having multiplicity one, the opposite would imply that (8) cannot be true. It is well known that $P_u(X(t) = j) > 0$ for all $t > 0$ if and only if j is accessible from u, so it follows from (7) that we must actually have $u_j > 0$ for all states j that are accessible from u, and in particular for all states j that are accessible from $S_a(\alpha)$. On the other hand, u being the unique solution of the system $uQ = -\alpha u$ and $u1^T = 1$, we must have $u_j = 0$ if j is not accessible from $S_a(\alpha)$. For it is easily seen that we can determine u by first solving the eigenvector problem in the restricted setting of states that are accessible from $S_a(\alpha)$, and subsequently putting $u_j = 0$ whenever j is not accessible from $S_a(\alpha)$. So $u_j > 0$ if and only if state j is accessible from $S_a(\alpha)$. The counterpart of (7) for the right eigenvector v is the relation

$$\sum_{j \in S} P_{ij}(t)v_j = e^{-\alpha t}v_i, \quad i \in S,$$

which may be used in a similar way to show that $v_i > 0$ if and only if $S_a(\alpha)$ is accessible from i. It follows in particular that both $u_j > 0$ and $v_j > 0$ if (and only if) $j \in S_a(\alpha)$, so that v may be normalized such that $uv^T = 1$. We summarize our findings in the next theorem.

Theorem 1 If $-\alpha$, the eigenvalue of Q with maximal real part, has multiplicity one, then there are unique nonnegative vectors u and v satisfying $uQ = -\alpha u$, $Qv^T = -\alpha v^T$, $u1^T = 1$, and $uv^T = 1$. The ith component of u is positive if and only if state i is accessible from $S_a(\alpha)$, whereas the ith component of v is positive if and only if $S_a(\alpha)$ is accessible from state i.

The vector u does not necessarily constitute the only quasi-stationary distribution of the process X, that is, the only initial distribution satisfying (9) for all $t \geq 0$. However, we can achieve uniqueness if we restrict ourselves to initial distributions from which $S_a(\alpha)$ is accessible. To prove this statement we need the following invariance result.

Lemma 2 If the initial distribution w is such that $S_a(\alpha)$ is accessible, and satisfies $wQ = xw$ for some $x < 0$, then $x = -\alpha$ and $w = u$.

5
Proof When the initial distribution \(w = (w_1, w_2, \ldots, w_n) \) is a left eigenvector corresponding to the eigenvalue \(\lambda \), then, by an argument similar to the one leading to (7), we have

\[
Pw(X(t) = j) = e^{\lambda t} w_j, \quad j \in S, \ t \geq 0.
\]

It follows that \(w_j > 0 \) for all states \(j \) that are accessible from \(w \). So, if \(S_{a(\alpha)} \) is accessible from \(w \), then \(w_j > 0 \) for all \(j \in S_{a(\alpha)} \). Hence, by Theorem 1, \(wv^T > 0 \). Since \(wQ = \lambda w \) implies \(\lambda \lambda v^T = wQv^T = -\lambda wv^T \), we must have \(\lambda = -\alpha \), and hence \(w = u \).

We can now copy the arguments in [5] (in which a similar invariance result is implicitly used) and conclude the following.

Theorem 3 If \(-\alpha \), the eigenvalue of \(Q \) with maximal real part, has multiplicity one, then \(\lambda \) has a unique quasi-stationary distribution \(u \) from which \(S_{a(\alpha)} \) is accessible. The vector \(u \) is the (unique, nonnegative) solution of the system \(uQ = -\alpha u \) and \(u1^T = 1 \).

To determine the limits (10) and (11) in the general setting at hand we need the announced generalization of (6). Its proof is similar to the proof of Theorem 1 in [12], but since this reference is in Russian we sketch the argument.

Theorem 4 If \(-\alpha \), the eigenvalue of \(Q \) with maximal real part, has multiplicity one then

\[
\lim_{t \to \infty} e^{\lambda t} P(t) = v^T u, \quad (14)
\]

where \(u \) and \(v \) are the eigenvectors defined in Theorem 1.

Proof With \(J = (J_{ij}) \) denoting the Jordan canonical form of \(Q \), there exists a nonsingular matrix \(S = (S_{ij}) \) such that \(Q = JS^{-1} \), and hence

\[
P(t) = e^{tQ} = Se^{tJ}S^{-1}, \quad t \geq 0.
\]

Since \(J_{11} = -\alpha \), while \(J_{1j} = J_{j1} = 0 \) if \(j \neq 1 \), it follows that

\[
P_{ij}(t) = e^{-\alpha t}S_{11}(S^{-1})_{1j} + o(e^{-\alpha t}) \quad \text{as} \ t \to \infty, \quad i, j \in S,
\]
and hence
\[
\lim_{t \to \infty} e^{\alpha t} P(t) = s^T t,
\]
where \(s^T \) denotes the first column of \(S \) and \(t \) the first row of \(S^{-1} \). Since \(QS = SJ \) we must have \(Qs^T = -\alpha s^T \), so we can normalize \(s \) such that \(s = v \). Moreover, by the Markov property,
\[
e^{-\alpha s} v^T t = e^{-\alpha s} \lim_{t \to \infty} e^{\alpha(t+s)} P(t+s) = v^T t P(s).
\]
Pre-multiplying this relation by \(u \) we obtain \(e^{-\alpha s} t = t P(s) \). Subsequently taking derivatives with respect to \(s \), and letting \(s \downarrow 0 \) yields \(-\alpha t = tQ \). Finally, since \(tv^T = ts^T = 1 \), we must have \(t = u \).

We can now copy the argument in [12] or [5] to conclude the following.

Theorem 5 If \(-\alpha\), the eigenvalue of \(Q \) with maximal real part, has multiplicity one, and the initial distribution \(w \) is such that \(S_{a(\alpha)} \) is accessible, then the limits (3) and (4) exist and are given by (10) and (11), respectively, where \(u \) is the unique quasi-stationary distribution from which \(S_{a(\alpha)} \) is accessible.

Remark The results in [12] and [5] constitute the continuous-time counterparts of results obtained in [11] and [4], respectively, in a discrete-time setting. The latter results have been generalized (in a more abstract, but still discrete, setting) by Lindqvist [10]. An alternative approach towards proving Theorem 5 would be to take Lindqvist results (in particular [10, Theorem 5.8]) as a starting point and prove their analogues in a continuous setting. In this way an even more general statement would result (allowing a degenerate eigenvalue \(-\alpha \) under certain conditions), but at the cost of a more elaborate notation and formulation.

The fact that the limiting distribution of the residual survival time exists and is exponentially distributed has been observed by Kalpakam [7] and Li and Cao [9] in a somewhat more general setting, namely when the Laplace transform of the survival-time distribution is a rational function (cf. [13]).
In what follows we are interested in particular in properties of the left eigenvector \(u \) that are determined by structural properties of \(Q \). To set the stage we first look more closely into the simple multi-class setting of a pure death process in the next section, and then generalize our results to quasi-death processes in Section 4.

3 Pure death processes

Let us assume that the Markov chain \(X = \{ X(t), \ t \geq 0 \} \) of the previous section is a pure death process with death rate \(\mu_i \) in state \(i \in S \), so that the matrix \(Q \) of (1) is given by

\[
Q = \begin{pmatrix}
-\mu_1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
\mu_2 & -\mu_2 & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & \ldots & 0 & \mu_n & -\mu_n
\end{pmatrix}
\] (15)

Evidently, the classes of \(S \) now consist of single states, so, maintaining the notation of the previous section, we let \(S_k = \{ k \} \), and find that \(\alpha_k = \mu_k \) and

\[
\alpha = \mu := \min_{i \in S} \mu_i.
\] (16)

As before, we assume that \(\mu \) is a nondegenerate eigenvalue of \(Q \), whence

\[
a := \arg \min_{i \in S} \mu_i
\] (17)

is uniquely defined. It is clear that an initial distribution \(w \) satisfies the requirements of Theorem 5 if and only if \(w \) has support in the set of states \(\{ a, a+1, \ldots, n \} \). Theorem 5 therefore implies the following, where an empty product denotes unity.

Theorem 6 Let \(X \) is a pure death process with death rate \(\mu_i \) in state \(i \in S \), and a unique state \(a \) such that \(\mu_a = \min_{i \in S} \mu_i \). If the initial distribution \(w \) is supported by at least one state \(i \geq a \), then

\[
\lim_{t \to \infty} P_w(T > t + s | T > t) = e^{-\mu s}, \quad s \geq 0.
\] (18)
and
\[
\lim_{t \to \infty} \mathbb{P}_w(X(t) = j | T > t) = u_j, \quad j \in S,
\]
where \(u = (u_1, u_2, \ldots, u_n) \) is the (unique) quasi-stationary distribution of \(X \) from which \(S_{a(\alpha)} \) is accessible, and given by
\[
u_j = \begin{cases}
\frac{\mu_j}{\mu_j \prod_{i=1}^{j-1} \left(1 - \frac{\mu_i}{\mu_i}\right)}, & j < a \\
\prod_{i=1}^{a-1} \left(1 - \frac{\mu_i}{\mu_i}\right), & j = a \\
0, & j > a.
\end{cases}
\]

Proof By Theorems 3 and 5 we have to show that the vector \(u \) satisfies \(uQ = -\mu u \) and \(u1^T = 1 \). It is a routine exercise to verify these properties. \(\square \)

Example The quasi-stationary distribution of the death process on \(S = \{0, 1, 2\} \) is given by
\[
u = (u_1, u_2) = \begin{cases}
\left(\frac{\mu_2}{\mu_1}, 1 - \frac{\mu_2}{\mu_1}\right), & \text{if } \mu_2 < \mu_1 \\
(1, 0), & \text{if } \mu_1 < \mu_2.
\end{cases}
\]

In view of Theorem 5 we conclude that state 1 is a *bottle-neck* state when \(\mu_1 < \mu_2 \), in the sense that the process is almost surely in state 1 if, after a long time, absorption has not yet occurred, whatever the initial distribution. This is an example of the phenomenon alluded to by Aalen and Gjessing in [3, Section 8]. Note that \((1, 0) \) is also a quasi-stationary distribution if \(\mu_2 < \mu_1 \), but one from which state 2 is not accessible. So it is a limiting conditional distribution only if \(\mathbb{P}(X(0) = 2) = 0 \). \(\square \)

As an aside we remark that the survival time in any birth-death process can be represented by the survival time in a pure death process with the same number of states (see, for example, Aalen [1]). Evidently, the quasi-stationary distributions of the two processes will be different in general.
4 Quasi-death processes

The absorbing continuous-time Markov chain \(X := \{X(t), \ t \geq 0\} \) of Section 2 is a *quasi-death process* if \(S = \{(\ell, j) \mid \ell = 1, 2, \ldots, L, \ j = 1, 2, \ldots, J_\ell\} \) and \(Q \) takes the block-partitioned form

\[
Q = \begin{pmatrix}
Q_1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
M_2 & Q_2 & 0 & \ldots & 0 & 0 & 0 \\
& & \ddots & \ddots & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots & \ddots & \ddots \\
& & & & 0 & 0 & \ldots & 0 \\
& & & & & M_L & Q_L
\end{pmatrix}, \tag{22}
\]

where \(Q_\ell \) and \(M_\ell \) are nonzero matrices of dimension \(J_\ell \times J_\ell \), and \(J_\ell \times J_{\ell-1} \), respectively. We write \(X(t) = (L(t), J(t)) \) and call \(L(t) \) the *level* and \(J(t) \) the *phase* of the process at time \(t < T \). Throughout this section we assume that \(S_\ell := \{(\ell, j) \mid j = 1, 2, \ldots, J_\ell\} \) is a communicating class for each level \(\ell \). Moreover, we suppose

\[
1M^T_\ell + 1Q^T_\ell = 0, \quad \ell = 2, 3, \ldots, L, \tag{23}
\]

and, to be consistent with (2),

\[
q_1 := -1Q^T_1 > 0. \tag{24}
\]

Hence, with probability one and for any initial state \((\ell, i)\), the function \(L(t) \), \(0 \leq t < T \), will be a step function with downward jumps of size one, and the process will eventually escape from \(S \), via a state at level 1, to the absorbing state 0. Extending the notation introduced in Section 2 we write

\[
\mathbb{P} w_\ell(.) := \sum_{i=1}^{J_\ell} w_{\ell i} \mathbb{P}((\ell, i))(.)
\]

for any distribution \(w_\ell = (w_{\ell 1}, w_{\ell 2}, \ldots, w_{\ell J_\ell}) \) over \(S_\ell \).

Evidently, if \(J_\ell = 1 \) for all levels \(\ell \) then we are in the setting of the simple death process of the previous section with death rate \(\mu_1 := q_1 \) in state 1 and \(\mu_\ell := M_\ell \) in state \(\ell > 1 \). On the other hand, if the initial distribution concentrates all mass on the first level, we are basically dealing with a Markov chain taking values in the set \(\{0\} \cup S_1 \), with 0 an absorbing state and \(S_1 \) a single
communicating class, a setting discussed in the beginning of Section 2. In the
general setting at hand we must apply Theorems 3 and 5, but, as we shall see,
we can reduce the amount of computation by exploiting the structure of Q.

We denote the (unique) eigenvalue of Q with maximal real part by $-\alpha_\ell$,
and the associated left and right eigenvectors by $x_\ell = (x_{\ell 1}, x_{\ell 2}, \ldots, x_{\ell J_\ell})$ and
$y_\ell = (y_{\ell 1}, y_{\ell 2}, \ldots, y_{\ell J_\ell})$, respectively. As noted before, α_ℓ is real and positive,
and x_ℓ and y_ℓ can be chosen strictly positive componentwise and such that

$$x_\ell 1^T = 1 \text{ and } x_\ell y_\ell^T = 1.$$ \hspace{1cm} (25)

In analogy to (6) we have

$$\lim_{t \to \infty} e^{\alpha_\ell t} P_{(\ell,i),(\ell,j)}(t) = y_{\ell i} x_{\ell j}, \text{ } i, j = 1, 2, \ldots, J_\ell,$$ \hspace{1cm} (26)

for each level ℓ, so we will refer to α_ℓ as the decay parameter of X in S_ℓ.
Moreover, the vector x_ℓ can be interpreted as the quasi-stationary distribution
of X in S_ℓ, in the sense that

$$\mathbb{P}_{u_\ell}(X(t) = (\ell, j) \mid T_\ell > t) = x_{\ell j}, \text{ } t \geq 0, j = 1, 2, \ldots, J_\ell,$$ \hspace{1cm} (27)

where T_ℓ denotes the sojourn time of X in S_ℓ, while

$$\mathbb{P}_{u_\ell}(T_\ell > t) = e^{-\alpha_\ell t}, \text{ } t \geq 0.$$ \hspace{1cm} (28)

If the initial distribution concentrates all mass in S_ℓ (and is represented by the
vector $w_\ell = (w_{\ell 1}, w_{\ell 2}, \ldots, w_{\ell J_\ell})$, say) but is otherwise arbitrary, then, by the
results of Darroch and Seneta [5] mentioned in Section 2,

$$\lim_{t \to \infty} \mathbb{P}_{w_\ell}(X(t) = (\ell, j) \mid T_\ell > t) = x_{\ell j}, \text{ } j = 1, 2, \ldots, J_\ell,$$ \hspace{1cm} (29)

and

$$\lim_{t \to \infty} \mathbb{P}_{w_\ell}(T_\ell > t + s \mid T_\ell > t) = e^{-\alpha_\ell s}, \text{ } s \geq 0.$$ \hspace{1cm} (30)

Now turning to a general initial distribution $w = (w_1, w_2, \ldots, w_L)$, where
$w_\ell = (w_{\ell 1}, w_{\ell 2}, \ldots, w_{\ell J_\ell})$ for $\ell = 1, 2, \ldots, L$, Theorem 5 tells us that the lim-
iting distribution of the residual survival time in $S = \cup_\ell S_\ell$ is exponentially
distributed with parameter $\alpha = \min_k \alpha_k$. As regards the limiting distribution
of $X(t)$ conditional on survival in S up to time t, we can finally state the
following generalization of Theorem 6.
Theorem 7 Let \mathcal{X} be a quasi-death process for which Q takes the form (22), and which has a unique level a such that $\alpha_a = \min_\ell \alpha_\ell$. If the initial distribution w is supported by at least one state in the set $\bigcup_{\ell \geq a} S_\ell$, then

$$\lim_{t \to \infty} \mathbb{P}_w(X(t) = (\ell, j) \mid T > t) = u_{\ell j}, \ j = 1, 2, \ldots, J_\ell, \ \ell = 1, 2, \ldots, L,$$

where $u_\ell := (u_{\ell 1}, u_{\ell 2}, \ldots, u_{\ell J_\ell})$ satisfies $u_\ell = 0$ if $\ell > a$, and $u_a = cx_a$, with x_a the (unique and strictly positive) solution of

$$x_a Q_a = -\alpha x_a, \quad x_a 1^T = 1;$$

for $\ell < a$, u_ℓ is recursively defined by

$$u_\ell = -u_{\ell+1} M_{\ell+1} (Q_\ell + \alpha I)^{-1}.$$

(31)

Here I is an identity matrix of appropriate dimensions and $c > 0$ is such that $u 1^T = 1$, where $u := (u_1, u_2, \ldots, u_L)$.

Proof Since, for all $\ell \neq a$, the matrix $Q_\ell + \alpha I$ has largest eigenvalue $-(\alpha_\ell - \alpha) < 0$, it follows from [14, Theorem 2.6(g)] that $-(Q_\ell + \alpha I)^{-1}$ exists and has strictly positive components. So, by induction, u_ℓ is positive componentwise for $\ell \leq a$. It follows easily that the vector u satisfies the requirements of Theorem 3.

References

