Power Tracks instead of Planes to Reduce Radiated Electromagnetic Fields

Frank B.J. Leferink
Thales Netherlands
Hengelo, The Netherlands
frank.leferink@nl.thalesgroup.com

Wim C. van Etten
University of Twente
Enschede, The Netherlands
w.c.vanetten@el.utwente.nl

Abstract
The noise voltage in the reference or ground of a printed circuit board is often the cause of unwanted radiated emission. Power supply planes attribute to the noise voltage. By replacing the power supply planes by tracks, the noise voltage in the reference or ground can be reduced, which leads to a considerable reduction of the radiated electromagnetic fields. A potential disadvantage of using power tracks is a decreased power quality, due to a higher ripple voltage. Actual circuits, fed via power planes or power tracks have been designed and measured showing the impact on radiated electromagnetic fields with constant power quality.

Keywords
Power plane, inductance, radiated emission, noise voltage

Introduction
Unwanted radiated electromagnetic fields are often created by unwanted antenna currents, generated by a noise voltage in the reference (ground) conductor. The focus has been on reducing the net partial inductance of the reference so that the noise voltage is reduced [1],[2],[3],[4],[5]. This conventional model is not valid for high frequencies where the longitudinal dimensions of a product are in the order of magnitude of a wavelength, as shown in Figure 1. The conclusion drawn, using this HF model, is that a (unbalanced) transmission line should be, geometrically seen, asymmetrical [6], [7].

Noise voltage
The noise voltage between two longitudinal points in a PCB is the source of unwanted radiated electromagnetic fields such as shown in Figure 2.

For high frequencies, and if \(l_{sc} \approx Z_c \approx Z_s \), then (1) reduces to

\[
\frac{U_{\text{noise}}}{U_s} = \frac{Z_g}{2 Z_c \gamma_s} \left[e^{-\gamma_s q} - 1 \right] \tag{2}
\]

The amplitude is maximal if \(\gamma_s q = (2n - 1)\pi \) for \(n=0, 1, 2, \ldots \), i.e. if \(q = (n - 1/2)\nu / f \), resulting in a maximal noise voltage of

\[
\frac{U_{\text{noise}}}{U_s} = \frac{L_{\text{net}}}{L_{\text{loop}}} \tag{3}
\]

In other words, the longitudinal noise voltage developed in the ground conductor is determined by the net partial inductance of that ground conductor with respect to the total loop inductance of the transmission line. This means that a (unbalanced) transmission line should be, geometrically seen, asymmetrical to reduce the noise voltage [6], [7].
Conventional power distribution

Power is generally provided via low impedance conductors (planes) so that the longitudinal voltage drop between two units during a high-frequency current pull is minimal. A cross-section of two typical 4-layer multilayer PCB is drawn in Figure 3. VCC denotes the power plane, Sig1 and Sig2 the signal track planes and GND the ground plane. The instantaneous signal current generated by the device in the signal line has to be supplied by the decoupling capacitor \(C_{\text{dec}} \) and this current will generate a noise voltage in the ground system through the net partial inductance of the ground plane. In case of a lack of a nearby placed decoupling capacitor the instantaneous signal will be supplied by the power planes.

![Figure 3: Cross-section of typical 4-layer PCB](image)

The noise voltage \(U_{\text{noise, power}} \) is, as a first order assumption, created by the instantaneous supply current \(I_{\text{is}} \) and the impedance of the reference (ground) plane \(Z_{\text{noise}} \):

\[
U_{\text{noise, power}} = Z_{\text{noise}} I_{\text{is}}
\]

This simple, conventional, model leads to the same limited conclusions as drawn in the last two decade for the noise voltage due to signal line currents: reduce the impedance of the reference to reduce the noise voltage. We have shown that the noise voltage at high frequencies is not determined by the absolute impedance of the reference plane, but by the geometrical asymmetry of the transmission line system. This observation would imply the use of power supply tracks instead of supply planes. This has been drawn in Figure 4.

![Figure 4: Cross-section of improved multilayer PCBs using the power isolation concept](image)

Measurement data using PCB transmission lines

In [19] the measurement results obtained by using a set of printed circuit board transmission lines has been discussed. The data has been summarised in Figure 5.

![Figure 5: Summarised measurement data](image)

The effect of preventing the power supply current to flow through the ground plane is obvious when comparing the measured data; A reduction of the field strength of approximately 50 dB can be observed. The influence of resonances, peaks around 100 and 200 MHz, can be seen.

Power quality

The disadvantage of power tracks is that the decoupling of a devices should be adequate in order to supply the circuit. We already suggested that in high-speed systems the dimensions of the power plane is large with respect to the propagation distance. Local decoupling, or using a better term, local stabilisation, is needed anyway. We should therefore focus on a minimum stabilisation for power quality and a maximum decoupling for reduced radiated emission. This concept has been discussed by other researchers before [8-18]. We will concentrate on the asymmetry of the (power supply) transmission line.

Experiments

A power supply (LM340-5 and capacitors), a clock generator, an octal driver (74ACT541) and an actual load (8 SMD resistors) are placed on a printed circuit board (PCB), as shown in Figure 6 and 7. The power supply was via a ground plane (Figure 6) and a power track (Figure 7). For reference, a PCB with signal traces above a ground plane has been measured too.

The radiated emission level has been measured with an absorbing clamp. To reduce external influences the PCBs were placed in metallic box. Note: in july the EMC laboratory was destroyed due to a fire, and shielded rooms were not available during the experiments.

![Figure 6: Printed circuit board 1, power plane](image)
A clock oscillator operating at 10 MHz and with fast rising edges (<1 ns) has been used as driver. Note that not the fundamental clock frequency but the risetime of the clock and driver is important. The clock oscillator and the driver where decoupled with respect to the bulk supply using a (SMD) series resistance and a (SMD) capacitor. The output signal of the driver integrated circuit is shown in Figure 8, which proves that the signal is not distorted.

The power ripple on the PCBs is shown in Figure 9, left for the plane, and right for the track. The left is appr. 200 mV peak, and the right appr. 300 mV peak.

Measurements have been performed at every 10 MHz harmonic between 10 MHz and 3000 MHz. The measured power is shown in Figure 10.

Conclusion

The noise voltage, the main cause of unwanted radiated electromagnetic fields, can be reduced by creating geometrically asymmetric transmission lines. This asymmetry should also be used for power supply systems. Radiated electric field measurements have been performed using actual circuits, showing a reduction of the radiated emission level without compromising the integrity of the functional signals.

References

