Further remarks on reduced languages. (English. English summary)

A binary relation R on an alphabet Σ is called an independence relation if R is symmetric and nonreflexive. A language L over Σ is said to be reduced with respect to an independence relation R on Σ, if for no strings x and y in L we have $x = uabv$, $y = ubav$, $u, v \in \Sigma^*$ and $(a, b) \in R$. A language reduced with respect to the maximal independence relation on Σ—viz. $\{(a, b) \mid a, b \in \Sigma, a \neq b\}$—is simply called reduced. For each family F of languages, F_R denotes the subfamily of reduced languages in F.

The authors show that it is decidable whether a regular language is reduced. For each F that includes the family of linear languages it is undecidable whether a given language from F belongs to F_R. Finally, a few characterizations of F in terms of F_R and language-theoretic operations (union, morphism, inverse morphism) are established.

Peter R. J. Asveld (NL-TWEN-C)