How to prove equivalence of term rewriting systems without induction.

Toyama, Yoshihito (J-NTTEC)

A reduction system is a structure $R = (A, \rightarrow)$ consisting of a set A and a binary relation \rightarrow on A. A term rewriting system is a reduction system where A is the set $T(F, V)$ of terms over a set F of function symbols and a set V of variables, and \rightarrow is a set of rewrite rules (l, r): $l \notin V$, and any variable in r also occurs in l.

The author proposes a new simple method to establish the equivalence of two reduction systems with respect to a restricted domain. This method is not directly based on induction but uses reachability of reduction systems and the Church-Rosser property. A distinction is made between abstract properties of the reduction relation and properties depending on the term structure.

The author’s method extends earlier approaches and is not limited to term rewriting: it also applies to various other reduction systems (Thue systems, graph rewriting, λ-calculus). An application of this method’s equivalence-preserving transformations consists in proving the correctness of some program transformation rules.

Peter R. J. Asveld (NL-TWEN-C)