DIRECT RF MODULATION TRANSMITTER, SAMPLING CLOCK FREQUENCY
SETTING METHOD FOR DIRECT RF MODULATION TRANSMITTER

Inventor(s): FUKUDA SHUICHI; BRAM NAUTA + (FUKUDA SHUICHI, ; BRAM NAUTA)

Applicant(s): ASAHI KASEI DENSHI KK + (ASAHI KASEI ELECTRONICS CO LTD)

Classification:
- international: H04B1/04; H04L27/20; H04L27/36
- cooperative:

Application number: JP20110170347 20110803

Priority number(s): JP20110170347 20110803

Also published as: JP5584180 (B2)

Abstract of JP2013038461 (A)

PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital baseband signal, and a differential local signal are inputted, for modulating the differential local signal with the I digital baseband signal and the Q digital baseband signal; a PLL circuit 102 for generating a sampling clock signal fs which determines data rates of the I digital baseband signal and the Q digital baseband signal at the digital/RF converters 105, 106; and a sampling clock frequency setting circuit 101 for determining the frequency of the sampling clock signal fs generated by the PLL circuit 102, according to an intended transmission carrier frequency.

COPYRIGHT: (C)2013,JPO&INPIT

PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital baseband signal, and a differential local signal are inputted, for modulating the differential local signal with the I digital baseband signal and the Q digital baseband signal; a PLL circuit 102 for generating a sampling clock signal fs which determines data rates of the I digital baseband signal and the Q digital baseband signal at the digital/RF converters 105, 106; and a sampling clock frequency setting circuit 101 for determining the frequency of the sampling clock signal fs generated by the PLL circuit 102, according to an intended transmission carrier frequency.
signal; a PLL circuit 102 for generating a sampling clock signal f_s which determines data rates of the I digital baseband signal and the Q digital baseband signal at the digital/RF converters 105, 106; and a sampling clock frequency setting circuit 101 for determining the frequency of the sampling clock signal f_s generated by the PLL circuit 102, according to an intended transmission carrier frequency.