Home > Publications
Home University of Twente
Prospective Students
Intranet (internal)

EEMCS EPrints Service

25314 Multivariate correlation analysis technique based on euclidean distance map for network traffic characterization
Home Policy Brochure Browse Search User Area Contact Help

Tan, Zhiyuan and Jamdagni, Aruna and He, Xiangjian and Nanda, Priyadarsi and Liu, Ren Ping (2011) Multivariate correlation analysis technique based on euclidean distance map for network traffic characterization. In: Information and Communications Security. Lecture Notes in Computer Science 7043. Springer Verlag, Berlin, pp. 388-398. ISSN 0302-9743

Full text available as:


276 Kb
Open Access

Official URL:


The quality of feature has significant impact on the performance of detection techniques used for Denial-of-Service (DoS) attack. The features that fail to provide accurate characterization for network traffic records make the techniques suffer from low accuracy in detection. Although researches have been conducted and attempted to overcome this problem, there are some constraints in these works. In this paper, we propose a technique based on Euclidean Distance Map (EDM) for optimal feature extraction. The proposed technique runs analysis on original feature space (first-order statistics) and extracts the multivariate correlations between the first-order statistics. The extracted multivariate correlations, namely second-order statistics, preserve significant discriminative information for accurate characterizations of network traffic records, and these multivariate correlations can be the high-quality potential features for DoS attack detection. The effectiveness of the proposed technique is evaluated using KDD CUP 99 dataset and experimental analysis shows encouraging results.

Item Type:Book Section
Research Group:EWI-DIES: Distributed and Embedded Security
Research Program:CTIT-ISTRICE: Integrated Security and Privacy in a Networked World
Uncontrolled Keywords:Euclidean Distance Map, Multivariate Correlations, Second-order Statistics, Characterization, Denial-of-Service Attack
ID Code:25314
Deposited On:28 November 2014
More Information:statistics

Export this item as:

To correct this item please ask your editor

Repository Staff Only: edit this item