Ultrahigh Magnetoresistance at Room Temperature in Molecular Wires
R. N. Mahato et al.
Science 341, 257 (2013);
DOI: 10.1126/science.1237242

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of August 5, 2013):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/341/6143/257.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2013/07/03/science.1237242.DC1.html
http://www.sciencemag.org/content/suppl/2013/07/03/science.1237242.DC2.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/341/6143/257.full.html#related

This article cites 34 articles, 2 of which can be accessed free:
http://www.sciencemag.org/content/341/6143/257.full.html#ref-list-1

This article appears in the following subject collections:
Physics, Applied
http://www.sciencemag.org/cgi/collection/app_physics
patterns decay back to the static seven-droplet pattern within a fraction of a second.

Dynamic patterns rely critically on low friction and energy dissipation (movie S12). The geometry of the dynamic patterns cannot be described in terms of energy minimization (Eq. 2), because they are far from the energy minimum. Instead, the patterns are better described and rationalized as dynamic states wherein the droplet number is kinetically trapped [as in the static patterns (Fig. 2C)]. Patterns can be classified into those that alternate (Fig. 4E) or do not alternate (Fig. 4D) during the cycled energy feed. Alternation is caused by different mobilities of the droplets: Elongated ones are more mobile because of the higher ratio between the driving and dissipative forces.

Dynamic self-assembly can be used as a switch between droplet patterns with different numbers of droplets. In contrast to the division instability, dynamic self-assembly decreases the number of droplets. This allows the irreversibility of the droplet formation in static self-assembly (Fig. 2C) to be overcome. For example, driving any static pattern to the mode V dynamic pattern (single elongated droplet) and decreasing the magnetic field while oscillating the magnet allows recovery of the original one-droplet state (movie S13). This is the final unit operation required to realize a complete cycle from a single liquid droplet to complicated static and dynamic patterns and, finally, back to the starting state (Fig. S10).

Externally driven magnetic droplets on super-hydrophobic surfaces form a versatile model system for studying and visualizing complicated phenomena in self-assembly. We used this model to demonstrate switching between static and dynamic self-assembly and to show the usefulness of kinetic trapping that most often is viewed only as a hindrance for assembly. The most diverse patterns were found to occur near the boundary where static patterns switch to dynamic ones. The transition is complex, and its detailed investigations will pave the way toward a better understanding of the onset of dynamic dissipative self-assembly.

References and Notes

Ultrahigh Magnetoresistance at Room Temperature in Molecular Wires

R. N. Mahato,1 H. Lülf,2 M. H. Siekman,1,3 S. P. Kersten,5 P. A. Bobbert,4 M. P. de Jong,1 L. De Cola,2,5 W. G. van der Wiel1,3

Systems featuring large magnetoresistance (MR) at room temperature and in small magnetic fields are attractive owing to their potential for applications in magnetic field sensing and data storage. Usually, the magnetic properties of materials are exploited to achieve large MR effects. Here, we report on an exceptionally large (>2000%), room-temperature, small-field (a few millitesla) MR effect in one-dimensional, nonmagnetic systems formed by molecular wires embedded in a zeolite host crystal. This ultrahigh MR effect is ascribed to spin blockade in one-dimensional electron transport. Its generic nature offers very good perspectives to exploit the effect in a wide range of low-dimensional systems.

In spintronic devices, the electron’s spin is exploited for information processing. Typically, these devices contain layered structures with an electrical resistance that is dependent on the relative orientation of the magnetization of their magnetic layers; thus, the resistance can be altered by an external magnetic field, a phenomenon called magnetoresistance (MR). Examples include giant magnetoresistance (GMR) devices (1, 2), which are multilayer stacks of ferromagnetic materials separated by a nonmagnetic metal spacer layer, and tunnel magnetoresistance (TMR) devices (3, 4), which have a tunnel barrier as the spacer. Here, we explore entirely different physics in a nonmagnetic system, relying on a mechanism akin to spin blockade in quantum devices.

The Pauli principle precludes that an electron can tunnel into a state already occupied by another electron with the same spin. This spin blockade for two electrons starting from a spintriplet configuration was first observed in quantum dots (QDs) at cryogenic temperatures (5). Spin blockade can be lifted by spin relaxation, mixing in singlet character. It has been shown that hyperfine interaction can lift spin blockade in QDs (6). The importance of hyperfine interaction on spin dynamics has also been recognized in the context of an intrinsinc, room-temperature MR effect in organic semiconductors (7, 8). Carrier transport is influenced by spin-dependent reactions, which are subject to the competition between an external magnetic field and the random hyperfine fields B_H (~1 mT) of the nuclei. At small B (Fig. 1A), hyperfine interactions...
mix in singlet character, hence lifting the blockade. However, at larger B, B_{hf} is overshadowed, so that spin blockade cannot be lifted (Fig. 1B). Unlike in QDs, spin blockade in organic molecules can occur at room temperature because of the much stronger wave function confinement, leading to a much larger energy spacing between the lowest singlet and triplet states.

In organic semiconductors exhibiting three-dimensional (3D) hopping conduction, the MR is rather small. It has been predicted, however, that confinement of the current path in molecular systems could lead to a strong increase of the MR (9). Here, we realize such a system experimentally. Our system (Fig. 2) consists of strictly 1D wires, formed by subliming organic dye molecules, DXP (N,N'-bis(2,6-dimethylphenyl)-perylen-3,4,9,10-tetracarboxylic diimide), into the channels of zeolite L crystals in the presence of potassium as counterion of its alumina sites (10). Zeolite L is a well-known, electrically insulating aluminosilicate crystalline system (11), which consists of many thousands of separated channels with a maximum diameter of 1.26 nm, running through the whole crystal and oriented perfectly parallel to the cylinder c axis. The geometrical constraints of the zeolite host structure allow for the formation of 1D chains of highly uniaxially oriented, closely spaced molecules. The 2.2-nm-long DXP molecules only fit into a channel in their length direction. Although DXP’s rigid van der Waals width is \sim0.76 nm, DXP can be inserted into the 0.71-nm channel opening above \sim175°C (12). We used relatively small size zeolites (30- to 100-nm height; 200- to 500-nm diameter), enabling an 86% DXP loading degree (10). At these high filling ratios, (hopping) electron transport along molecular wires can be readily observed in our conducting-probe atomic force microscopy (CP-AFM) experiments, making this system suitable for 1D transport measurements. DXP-loaded zeolites have been applied before as artificial photonic antenna systems (11), where energy transfer occurs due to near-field interaction. A number of studies report on the electrical conductivity of zeolites loaded with metal atoms (13, 14) or conductive polymers (15, 16), as well as on the effect of inserting different charge-balancing cations (17–19). However, most of this work focuses on bulk systems of a large number of randomly oriented zeolites, with the exception of (20).

Magnetotransport measurements were carried out on DXP-loaded zeolites on top of an ITO/PEDOT:PSS [indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)] substrate at room temperature in an ultrahigh vacuum CP-AFM with a PtSi tip. We estimate that \sim107 channels contribute in parallel to electron transport (10). The measurements were obtained from zeolites with heights of 30, 45, 60, 80, and 90 nm. For every height, the results were reproduced for at least two different zeolites. The current (I)–voltage (V) characteristics in Fig. 3 are almost symmetric in voltage, in accordance with the spin blockade theory. The resistance $R = V/I$ versus channel length is shown in the (lower right) inset of Fig. 3.
with the similarity of the work functions of the two contacts. The I-V characteristics are typical for energetically disordered systems with hopping transport. The upper left inset displays the same data on a logarithmic I scale, showing a transition from a linear behavior (indicated by the dashed line) at low voltage to a superlinear power-law behavior at high voltage. The resistance, $R = I/V$, as a function of channel length for different voltages, is given in the lower right inset. The increase of the resistance with length changes from exponential at low voltage to linear at higher voltages. As the resistance is dependent on channel length, the conductivity is limited by the molecular wires rather than by the contacts. The symmetric I-V curves and absence of an injection barrier indicate unipolar transport. Both PEDOT:PSS and PtSi have work functions around -5 eV (21, 22), roughly in the middle between the energies of the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) of DXP (-6.0 and -3.9 eV, respectively) (23). This seems to be at odds with the absence of an injection barrier. However, the mobile potassium ions in the channels could substantially change the injection barrier by creating dipole layers at the channel entrance, yielding an exponentially decaying charge concentration profile compatible with the observed exponential dependence of the resistance on channel length at low voltage. We confirmed that empty zeolites do not show any detectable current up to 9 V. Likewise, CP-AFM measurements on ITO|PEDOT:PSS substrates give linear I-Vs with negligible resistance (10).

Figure 4A shows the current-voltage characteristic for a 60-nm channel length at zero magnetic field and at 14 mT perpendicular to the wires, plotting $|I|$ on a logarithmic scale. Despite the small magnetic field, a very strong current suppression is observed at 14 mT, especially at lower voltage. To study the magnetic field dependence of the current through the molecular wires in more detail, we define the magnetoconductance (MC) as

$$MC(B) = \frac{I(B) - I(0)}{I(0)} \quad (1)$$

where $I(B)$ is the current at magnetic field B, and $I(0)$ the current at zero magnetic field, yielding a maximum possible negative MC of -100%. Figure 4B shows $MC(B)$ at different bias voltages for a 60-nm wire length. We observe a very large, negative MC, monotonically increasing with decreasing voltage. Similar behavior was observed for other wire lengths (10).

The MC(B) curves can be fitted well with the empirical line shape

$$MC(B) \propto \frac{B^2}{(B_0 + |B|)^2} \quad (2)$$

applied before in the context of organic magnetoresistance (OMAR) (7). It has a characteristic width B_0, related to the magnitude of the hyperfine fields. The fitted B_0 values (fig. S2) vary between 2 and 6 mT, comparable to values obtained for OMAR (7), and show almost no voltage dependence. The mT field scale agrees well with the typical hyperfine coupling in π-conjugated molecules, clearly pointing at a molecular origin. The very large room-temperature MC approaching the maximum possible value of -100% is notable.

The voltage dependence is more clearly represented if we convert MC to the more common netoresistance (OMAR) (7). It has a characteristic width B_0, related to the magnitude of the hyperfine fields. The fitted B_0 values (fig. S2) vary between 2 and 6 mT, comparable to values obtained for OMAR (7), and show almost no voltage dependence. The mT field scale agrees well with the typical hyperfine coupling in π-conjugated molecules, clearly pointing at a molecular origin. The very large room-temperature MC approaching the maximum possible value of -100% is notable.

The voltage dependence is more clearly represented if we convert MC to the more common netoresistance (OMAR) (7). It has a characteristic width B_0, related to the magnitude of the hyperfine fields. The fitted B_0 values (fig. S2) vary between 2 and 6 mT, comparable to values obtained for OMAR (7), and show almost no voltage dependence. The mT field scale agrees well with the typical hyperfine coupling in π-conjugated molecules, clearly pointing at a molecular origin. The very large room-temperature MC approaching the maximum possible value of -100% is notable.
where \(R(B) \) is the resistance at magnetic field \(B \) and \(R(0) \) the resistance at zero field. We have derived \(MR_{\text{max}}(V) \) from the \(I-V \)s for different channel lengths at zero magnetic field and maximum magnetic field, \(B_{\text{max}} \) according to \(MR_{\text{max}}(V) = \left[R(V) - R(B_{\text{max}}) \right] / R(B_{\text{max}}) \). (Fig. 4C). The DC magnetoresistance increases rapidly with decreasing voltage, reaching a maximum value of more than 2000% for 60-nm wire length when approaching 0 V. Because the current levels are below the noise limit close to 0 V, we have not been able to determine \(MR_{\text{max}} \) at very low bias points.

The DC magnetoresistance values in our molecular wires compare favorably with values reported for other systems under similar conditions. The highest room-temperature TMR value reported to date is 600% for an epitaxial CoFeB/MgO/CoFeB magnetic tunnel junction (24). Colossal magnetoresistance (CMR) manganites exhibit very large low-temperature MR at several tesla (25); however, room-temperature, low-field MR values are a few tens of percents (26, 27). For nanocomposites containing magnetic nanoparticles, MR values similar to those in CMR experiments have been demonstrated under comparable experimental conditions (28). A large room-temperature MR effect of a few tens of percents was also reported for a graphene nanoribbon field-effect transistor (29).

We ascribe our very large MR values to the unique 1D character of our system. Indeed, nonstructured DXP thin films show much lower MR values (Fig. 4D). When a ~40-nm DXP film is contacted with a PdSi CP-AFM tip in the same setup, we measure a maximum MC of ~20%. With a Pt wire of 250-μm diameter instead of the PdSi tip, the maximum MC is reduced to about ~5%. These results strongly suggest that confinement of the current path is crucial for explaining our results, in line with recent numerical studies (9). Explanations based on spin-dependent interactions involving excited states (30, 31) can be ruled out, because the MR is also present—and even more pronounced—below the DXP HOMO-LUMO gap (~2 eV). The fact that for DXP the energy required to form doubly negatively charged states is remarkably small (~0.2 eV from cyclic voltammetry measurements (23)) suggests that such states are involved in transport. We therefore propose that the current is carried by electrons and that spin blockade is caused by two electrons residing on neighboring molecules attempting to form a doubly negatively charged molecule in a spin-singlet configuration by hopping of one of the electrons. The energetic disorder generally present in organic systems facilitates formation of doubly charged molecules at favorable locations. Moreover, the presence of a positively charged potassium ion close to a DXP molecule strongly reduces its LUMO level, also facilitating double charging. Simulations show that with these ingredients, MC values close to ~100% inden can be obtained with MC (B) curves having the line shape of Eq. 2 (10). Further analysis should provide more insight into the details of the mechanism behind the effect, but the present experimental results clearly point at spin blockade tuned by a competition between the external magnetic field and the random internal hyperfine field.

References and Notes
10. Materials and methods are available as supplementary materials on Science Online.

Isotope Ratios of H, C, and O in CO₂ and H₂O of the Martian Atmosphere

Chris R. Webster,1*, Paul R. Mahaffy,2 Gregory J. Flesch,1 Paul B. Niles,6 John H. Jones,7 Laurie A. Leshin,4 Sushil K. Atreya,4 Jennifer C. Stern,2 Lance E. Christensen,3 Tobias Owen,5 Heather Franz,2 Robert O. Pepin,1 Andrew Steele,4 the MSL Science Team†

Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and 13O/16O in water and 12C/13C, 18O/16O, 17O/16O, and 13C18O/12C16O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)’s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO₂ and H₂O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

The Sample Analysis at Mars (SAM) suite (1) on the Curiosity rover that landed in August 2012 is conducting a search for organic compounds and volatiles in rocks and soils and characterizing the chemical and isotopic composition of the modern atmosphere. Atmo-