Internet-wide Geo-networking Problem Statement
draft-karagiannis-problem-statement-geonetworking-01

Abstract

This document describes the need of specifying Internet-wide location-aware forwarding protocol solutions that provide packet routing using geographical positions for packet transport.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 04, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Table of Contents
1. Introduction .............................................. 3
2. Use cases and scenarios .................................... 6
3. Requirements ................................................ 12
4. Open Design Issues ......................................... 14
5. Possible solutions ........................................... 16
6. Security Considerations ..................................... 19
7. IANA Considerations ......................................... 19
8. Acknowledgments .............................................. 19
9. Normative References ......................................... 20
10. Informative References ....................................... 20
11. Authors’ Address ............................................. 22
1. Introduction

1.1 Motivation

Internet-based applications use IP addresses to address a node that can be a host, a server or a router. Scenarios and use cases exist where nodes are being addressed using their geographical location instead of their IP address. The most obvious use cases are related to Intelligent Transportation Systems (ITS) and vehicular networking, environmental monitoring, consumer electronic devices (e.g., cameras) and scientific instruments. In this document we will mainly focus on ITS and vehicular networking. An ITS use case is, for example, a traffic jam or a chain collision, where all vehicles heading towards the potential hazard should be warned. In particular, for vehicles ahead that are moving away from the hazardous location, the information is not relevant anymore. In such dangerous situation geo-networking can offer great support to applications that require geographical addressing.

Internet-wide Geo-Networking is a location-aware forwarding protocol that provides packet routing using geographical positions for packet transport over the Internet. Vehicular networking can be considered as one of the most important enabling technologies required to implement a myriad of applications related to vehicles, vehicle traffic, drivers, passengers and pedestrians. Two main types of vehicle communication networks can be distinguished. In the Vehicle-to-Infrastructure (V2I) communication network packets are exchanged among vehicles using an infrastructure that can be Internet-wide. The second type is Vehicle-to-Vehicle (V2V) communication, where packets are exchanged among vehicles without the need for a communication infrastructure. Hybrid scenarios that combine V2V and V2I communication appear reasonable.

Intelligent Transportation Systems aim to improve the operation of vehicles, manage vehicle traffic, assist drivers with safety and other information, along with provisioning of convenience applications. Prime examples of ITS services include automated toll collection systems, driver assist systems and other information provisioning systems. Over the last decade, the development of ITS services has been backed up by coordinated efforts for standardization and formation of consortia and other governmental and industrial bodies that aim to set the guiding principles, requirements, and first takes on solutions for ITS-related communication systems that primarily involve vehicles and users within vehicles.

The main challenges that are associated with Internet-wide geo-networking are:

- support of geo-addressing, where geographical information should be available in the addressing mechanism, such that packets can be forwarded to a target geographical area. The geographical area may either be specified by the source (application) or might not be specified at all.
o) support of Internet-wide geo-routing, where data packets that are generated by source nodes placed anywhere in the Internet are forwarded over multiple hops by using the position of the destination node(s) and the positions of intermediate nodes for the routing decisions.

o) creation of a forwarding method that comprises (1) a local-computer decision algorithm which can deterministically compare IP/geographical addresses present in a packet to IP/geographical addresses present in a local database, (2) a (mixed IP and geographical) database topology distribution algorithm among several computers, and (3) an IP/geographical path construction algorithm which acts on the IP/geographical database.

o) the use of a single consensual geodesic datum which may be used by present and future GNSSs (Global Navigation Satellite Systems) by as many as possible network operators, and agreed datum conversion methods.

o) representation of precision in IP addressing. IP addresses are precise and unique, whereas geographical coordinates involve notions of precision and accuracy.

Geo-addressing:
In [RFC2009], three families of solutions are described to integrate the concept of physical location into the current design of Internet that relies on logical addressing. These families of solutions are: (1) Application layer solutions, (2) GPS-Multicast solution. (3) Unicast IP routing extended to deal with GPS addresses. In particular, [RFC2009] specifies how GPS positioning is used for destination addresses. A GPS (Global Positioning System) address could be represented by using: (1) closed polygons, such as circle(center point, radius), where, any node that lies within the defined geographic area could receive a message, (2) site-name as a geographic access path, where a message can be sent to a specific site by specifying its location in terms of real-word names such as names of site, city, township, county, state, etc. [ETSI-EN-302-636-4-1] specifies geographical addressing for point-to-point and point-to-multipoint communications over short range wireless communication technologies, such as ITS-G5, for vehicle-to-vehicle communication.

Also other solutions for geo-addressing have been specified, but none of them have been applied for Internet-wide geo-networking.

Geo-routing:
A significant number of geo-routing protocols are available, see e.g., [KaAl11] for a survey. These protocols can mainly be divided in two categories. The first category focuses on unicast routing, and the second covers broadcast routing. [ETSI-EN-302-636-4-1] specifies an sub-IP-routing protocol with unicast and broadcast forwarding schemes for multi-hop and ad hoc communication among vehicles and between vehicles and roadside station utilizing geographical positions.

[ETSI-EN-302-636-6-1] has standardized the transmission of IPv6 packets over ETSI GeoNetworking that can be used for the forwarding of IPv6 packets using the position of the destination node(s) and the positions of intermediate nodes for the routing decisions.
However, these geo-routing protocols are not designed for Internet-wide geo-networking.

1.2 Goal

Internet-wide geo-networking targets at IP-layer extensions that allow source nodes anywhere in the Internet to geo(broad/any)cast packets to all/any node(s) with geo-location awareness within an arbitrary, source-specified destination area.

1.3. Terminology

On Board Unit (OBU)

a processing and communication feature that is located in a vehicle, which provides an application runtime environment, positioning, security and communications functions and interfaces to other vehicles including human machine interfaces. OBU is also known as OBE (On-Board Equipment).

Road Side Unit (RSU)

equipment located along highways, at traffic intersections and other type of locations where timely communications with vehicles are needed. Each RSU includes DSRC (Direct Short Range Radio, e.g., IEEE 802.11p) radio, a positioning system and a router to route packets back through the infrastructure network. RSU is also known as RSE (Road Side Equipment)

Vehicle-to-Vehicle (V2V)

(same as in [draft-ietf-mext-nemo-ro-automotive-req]): a generic communication mode in which data packets are exchanged between two vehicles, either directly or traversing multiple vehicles, without involving any node in the infrastructure.

Vehicle-to-Infrastructure (V2I)

generic communication mode in which data packets sent by a vehicle traverse a communication infrastructure.

Infrastructure-to-Vehicle (I2V)

generic communication mode in which data packets received by a vehicle traverse a communication infrastructure.

Host vehicle

a vehicle that uses the ITS application.

Traffic safety application

application that is primarily applied to decrease the probability of traffic accidents and the loss of life of the occupants of vehicles.
Geographically-scoped broadcast (or geocast), see [C2C-CC_Manifesto]

Forwarding mechanism that is used to transport data from a single node to all nodes within a target area that is specified by geographical positions, e.g. defined by a geographic region. The geographic region is determined by a geometric shape, such as circle and rectangle.

Geographical Unicast (or geounicast) see [C2C-CC_Manifesto]

Forwarding mechanism that is used for unidirectional data transport from a single node (source) to a single node (destination) by means of direct communication or by multiple hops based on geographic specific addresses that include node identifier, geographical position, and time information.

Geographically-scoped anycast (or geoanycast), see [C2C-CC_Manifesto]

Forwarding mechanism that transports data from a single node to any of the nodes within a geographically area. Compared to geographically-scoped broadcast, with geographically-scoped anycast after a packet reaches one vehicle located in the specified geographic area, it stops being forwarded to other vehicles located in the same area.

1.4. Organization of This Document

This document is organized as follows. Section 2 describes several Geo-networking use cases an scenarios. Section 3 describes the requirements that need to be fulfilled by the Internet-wide Geo-networking solution. The open design issues are discussed in Section 4. Section 5 describes possible solutions of realizing the Internet-wide Geo-networking solution. Section 6 describes the security considerations. The acknowledgement section is provided in Section 8.

2. Use cases and scenarios

2.1 Scenario

The scenario that is considered in this document for the support of Internet-wide geo-networking is shown in Figure 1. This scenario shows a source node, which can be located anywhere, and is interconnected with access routers via the Internet. The packets generated by the source are routed through the Internet using the typical destination address based routing up to the access routers. Geo-routing is then used to forward the packets towards the destination area where the recipients are located. In the destination area the packets are geo-broadcasted to all the recipients within the destination area.
2.2 Use cases

The use cases considered in this section are vehicular networking use cases. However, Internet-wide geo-networking can be applied to any use case that is similar to these vehicular use cases where source nodes anywhere in the Internet are able to geo(broad/any)cast packets to all/any node(s) with geo-location awareness within an arbitrary, source-specified destination area.

Vehicular networking can be considered as one of the most important enabling technologies needed to support various types of traffic applications, such as infotainment type of applications, traffic efficiency & management and traffic safety applications.

Traffic safety applications are those that are primarily applied to decrease the probability of traffic accidents and the loss of life of the occupants of vehicles. Note that VSC and VSC-A projects focus on vehicle-to-vehicle safety. Another project called CICAS-V (Cooperative Intersection Collision Avoidance Systems - Violation) discuss the traffic safety application over vehicle-to-infrastructure communication.

Traffic efficiency & management applications are focusing on improving the vehicle traffic flow, traffic coordination and traffic assistance. Moreover, traffic efficiency & management applications are focusing on providing updated local information, maps and in general messages of relevance limited in space and/or time.
Infotainment types of applications are the applications that are neither traffic safety applications nor traffic efficiency & management applications. Such applications are supported by e.g., media downloading use cases. Such vehicular applications are defined by several initiatives:
  o the USA VSC (Vehicular Safety Communications) and VSC-A (VSC-Applications) projects.
  O the European Car-to-Car Communication Consortium (C2C-CC) [C2C-CC] and the ETSI TC ITS [ETSI TC ITS], [ETSI-TR-102-638] with the additional support of some EU funded research projects, such as SEVECOM [SEVECOM], SAFESPOT [SAFESPOT], CVIS [CVIS], PREDRIVE-C2x [PREDRIVE-C2x], GEONET [GEONET].

The USA Vehicle Safety Communications (VSC) consortium, see [VSC], is supported among others by CAMP (Crash Avoidance Metrics Partnership). CAMP is a partnership that has been formed in 1995 by Ford Motor Company and General Motors Corporation. The objective of CAMP is to accelerate the implementation of crash avoidance countermeasures to improve traffic safety by investigating and developing new technologies. VSC has been realized in two phases.

The descriptions of the relevant traffic safety applications are taken from [draft-karagiannis-traffic-safety-requirements].

The first phase, denoted as VSC started in 2002 and ended in 2004. The second phase started in 2006 and ends in 2009. VSC focused and is focusing on traffic safety related applications. In 2006, The VSC 2 consortium in cooperation with USDOT initiated a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications - Applications (VSC-A) project, see [VSC-A]. The VSC2 consortium consists of the following members; Mercedes-Benz, Ford, General Motors, Honda & Toyota. The main goal of this project is to develop and test communications-based vehicle safety systems to determine whether vehicle positioning in combination with the DSRC at 5.9 GHz can improve the autonomous vehicle-based safety systems and/or enable new communication-based safety applications.

The WAVE Short Message Protocol [IEEE 1609.3] was designed specifically to offer a more efficient (smaller size) alternative to TCP or UDP over IP, for 1-hop messages that require no routing.

The European Car-to-Car Communication Consortium (C2C-CC) is an industry consortium of car manufacturers and electronics suppliers that focuses on the definition of an European standard for vehicular communication protocols.

The European Telecommunications Standards Institute (ETSI) Technical Committee (TC) Intelligent Transport Systems (ITS) was established in October 2007 with the goal of developing and maintaining standards, specifications and other deliverables to support the development and the implementation of ITS service provision.
It is foreseen that ETSI ITS will be the reference standardization body of the future European ITS standards, and actually the C2C-CC provides recommendations to the ETSI TC ITS.

The following subsections describe use cases that can be implemented using either V2I or V2V. When V2V is applied, the use of Internet-wide Geo-networking solution is not required.

2.2.1 Traffic safety use cases

In VSC, see [VSC] 34 vehicle application scenarios have been identified, evaluated and ranked. From this evaluation, a subset of eight significant near- and mid-term traffic safety applications have been selected: (1) cooperative forward collision warning, (2) curve speed warning, (3) pre-crash sensing, (4) traffic signal violation warning, (5) lane-change warning, (6) emergency electronic brake light, (7) left turn assistant, (8) stop sign movement assistant. A brief description of these applications is given below (for more details, see [VSC]):

- Traffic signal violation warning: it informs and warns the driver to stop at a legally prescribed location in the situation that the traffic signal indicates a stop and it is estimated that the driver will be in violation.

- Curve speed warning - Rollover Warning: aids the driver in negotiating speeds at appropriate curves.

- Emergency Electronic Brake Lights: it is used to inform vehicles that a vehicle brakes hard. In particular in this situation a warning message is sent to the vehicles moving behind the vehicle that brakes hard.

- Pre-crash sensing: it prepares the driver for an unavoidable and imminent collision.

- Cooperative Forward Collision Warning: aids the driver in mitigating or avoiding collisions with the rear-end vehicles in the forward path of travel through driver notification or warnings of an unavoidable collision. This application does not attempt to control the vehicle to avoid an unavoidable collision.

- Left Turn Assistant: it informs the driver about oncoming traffic in order to assist him in making a left turn at a signalized intersection without a phasing left turn arrow.

- Lane Change Warning: it warns the driver if an intended lane change may cause a crash with a nearby moving vehicle.

- Stop Sign Movement Assistance: it warns the driver that the vehicle is nearby an intersection, which will be passed after having stopped at a stop sign.
In the VSC-A project an additional investigation has been performed, on traffic safety applications that can be used in crash immitment scenarios, see [VSC-A]. The following 7 traffic safety applications have been selected for implementation in the VSC-A test bed.

- Emergency Electronic Brake Light: is a traffic safety application that is the same as the Emergency Electronic Brake Light application defined in the VSC project, see above.

- Forward Collision warning: is a traffic safety application that is the same as the Cooperative Forward Collision Warning application defined in the VSC project, see above.

- Intersection Movement Assist: is a traffic is intended to warn the driver of a vehicle when it is not safe to enter an intersection due to high collision probability with other vehicles. It is similar to the Stop Sign Movement Assistance application defined in the VSC project, see above.

- Blind Spot Warning & Lane Change Warning: it is similar to the Lane Change Warning application defined in the VSC project, see above. In the Blind Spot Warning application the driver of a host vehicle is informed that another vehicle is moving in an adjacent lane and that this vehicle is positioned in a blind spot zone of the host vehicle.

- Do Not Pass Warning: this is an application that was not investigated in the VSC project. It is intended to warn the driver of a host vehicle during a passing maneuver attempt when a slower vehicle, ahead and in the same lane, cannot be safely passed using a passing zone which is occupied by vehicles with the opposite direction of travel. In addition, the application provides advisory information that is intended to inform the driver of the host vehicle that the passing zone is occupied when a passing maneuver is not being attempted.

- Control Loss Warning: this is an application that was not investigated in the VSC project. It is intended to enable the driver of a host vehicle to generate and broadcast a control-loss event to surrounding vehicles. Upon receiving this information the surrounding vehicle determines the relevance of the event and provides a warning to the driver, if appropriate.

The Car to Car Communication Consortium specified a number of traffic safety use cases. The following three are considered as being the main traffic safety use cases, see [C2C-CC_Manifesto]:

- Cooperative Forward Collision Warning: this use case tries to provide assistance to the driver. Vehicles share (anonymously) information such as position, speed and direction. This enables the prediction of an imminent rear-end collision, by each vehicle monitoring the behavior of its own driver and the information of neighboring vehicles. If a potential risk is detected, the vehicle warns the driver.
This use case requires: the ability for all vehicles to share information with each other over a distance of about 20 to 200 meters, accurate relative positioning of the vehicles, trust relationships among the vehicles and a reasonable market penetration (at least 10%).

- Pre-Crash Sensing/Warning: this use case is similar to the previous one, but in this case the collision is identified as unavoidable, and then the involved vehicles exchange more precise information to optimize the usage of actuators such as airbags, seat belt pre-tensors, etc...
  This use case requires basically the same abilities that the previous one, restricting the needed communication range to 20 to 100 meters, and adding the requirement of a fast and reliable connection between the involved cars.

- Hazardous Location V2V Notification: this use case is based on the share of information that relates to dangerous locations on the road, among vehicles, and also among vehicles and the road infrastructure.
  On one hand, vehicles may detect the dangerous locations from sensors in the vehicle or from events such as the actuation of the ESP (Electronic Stability Program).
  On the other hand, recipients of this information may use it to properly configure active safety systems and/or warn the driver.
  This use case requires: vehicles to trust other vehicles and roadside units, reasonable market penetration, the ability of vehicles to share information about a specific geographic location over multiple-hops and the ability to validate information propagated through multiple hops.

2.2.2 Traffic efficiency and management use cases

Such applications are focusing on improving the vehicle traffic flow, traffic coordination and traffic assistance and provide updated local information, maps and in general, messages of relevance bounded in space and/or time. Two typical groups of this type of applications are speed management and co-operative navigation are two typical groups of this type of applications [ETSI-TR-102-638], [KaAl11].

- Speed management:
  Speed management applications aim to assist the driver to manage the speed of his/her vehicle for smooth driving and to avoid unnecessary stopping. Regulatory/contextual speed limit notification and green light optimal speed advisory are two examples of this type.

- Co-operative navigation
  This type of applications is used to increase the traffic efficiency by managing the navigation of vehicles through cooperation among vehicles and through cooperation between vehicles and road side units. Some examples of this type are traffic information and recommended itinerary provisioning, co-operative adaptive cruise control and platooning.
2.2.3 Infotainment Applications

Such applications are neither traffic safety applications nor traffic efficiency & management applications and are mainly supported by e.g., media downloading use cases, see [CVIS], [C2C-CC_Manifesto], [ETSI-TR-102-638], [PREDRIVE-C2x], [KaAl11]:

- Co-operative local services
  This type of applications focus on infotainment that can be obtained from locally based services such as point of interest notification, local electronic commerce and media downloading.

- Global Internet services
  In this type of applications the focus is on data that can be obtained from global Internet services. Typical examples are Communities services, which include insurance and financial services, fleet management and parking zone management, and ITS station life cycle, which focus on software and data updates.

3. Requirements

This section includes the requirements that need to be fulfilled by Internet geo-networking solutions and are based on [ETSI-EN-302-636-1].

3.1 Functionality requirements

This section describes the functionality requirements that need to be supported by the Internet-wide geo-networking solution.

3.1.1 No changes to existing routing infrastructure

The Internet geo-networking solution MUST NOT impose any changes on the existing Internet-wide routing infrastructure.

3.1.2 Minimal changes to the IP layer in source nodes

The changes on the IP layer used by the source nodes, i.e., the nodes that are making use of Internet-wide geo-networking SHOULD be minimized.

3.1.3 Communication mode

The geoanycast, geounicast and geobroadcast communication modes MUST be supported by the Internet-wide geo-networking solution.

3.1.4 Geo-addressing

Geographical information MUST be available in the addressing mechanism, such that packets can be forwarded to a target geographical area.
3.1.5 Internet-wide geo-routing

The Internet geo-networking solution MUST enable the forwarding of packets over multiple hops by using the position of the destination node(s) and the positions of intermediate nodes for the routing decisions. The Internet geo-routing solution SHOULD be able to operate without predefining the set of possible destination areas.

3.1.6 Internet-wide geo-networking and IPv6

The Internet geo-networking solution MUST support transparently the routing of IPv6 packets.

3.1.7 Data congestion control

Data congestion control functions SHOULD be supported in order to keep network load at an acceptable level and eliminate unnecessary duplicates of packets with limited control overhead.

3.1.8 Security and privacy

The Internet-wide geo-networking solution MUST support security objectives for all supported communication modes. Security objectives particularly include integrity, privacy and non-repudiation and SHOULD protect the network and transport layer protocol headers. In addition the Internet-wide geo-networking solution MUST also protect privacy, i.e. provide confidentiality to personal data such as relation between node identifier and location.

3.2 Performance requirements

This section describes the performance requirements that need to be supported by the Internet-wide geo-networking solution.

3.2.1 Low-latency communications

The Internet geo-networking solution SHOULD support low latency communications. This requirement mainly applies to traffic safety and traffic efficiency applications.

3.2.2 Reliable communications

The Internet geo-networking solution SHOULD support reliable communications with the highest reliability for traffic safety messages.

3.2.3 Low signaling, routing and packet forwarding overhead

The signaling, routing and packet forwarding overhead SHOULD be minimized.
3.2.4 Priority support

The Internet geo-networking solution SHOULD support packets with different priorities with the highest priority for critical traffic safety packets.

3.2.5 Scalability

The Internet geo-networking solution SHOULD be able to maintain its performance to acceptable levels even when it is applied to:

- global coverage with small geocast areas
- large traffic volumes (large flows)
- large number of active sources

4. Open Design Issues

This section describes the Internet wide geo-networking open design issues that can be addressed by the IETF.

4.1 Geo-addressing in the wired Internet

The Standard Internet routers are not aware of geo-networking functionality. Therefore, the used addresses used must be regular addresses that route to / via the Access Router.

In particular, regarding unicast and multicast addresses the following issues can be identified.

- Using unicast addresses for all destination areas: does not scale well and packets are sent multiple times on the wireless interface
- Unicast addresses of relevant access routers: can be realized by using e.g., tunneling.
- Using multicast addresses to specify destination areas: A standard router should be able to route packets that are using predefined multicast addresses. This implies that an arbitrary, source-specified destination area cannot be coded this way. Alternatively, packets could be sent to a set of predefined areas which together include the source-specified destination area (further filtering at destination). However, consider that one multicast address per access point is needed. Consider also that each access point provides radio coverage to an area of 300m x 300m, which is approximately equal to 10^5 m^2. This would require that on a global scale we will need: 5 * 10^14 / 10^5 = 5 * 10^9 multicast addresses to cover the earth, which will need to be maintained by the routing table of a router. This is far too many addresses that can be maintained by nowadays routers in their routing tables. A solution could be to define larger predefined areas. In this case however, many useless packet transmissions will need to be supported. It can be, therefore, deduced that the normal use of multicast addresses does not scale. Meaning that other solutions are needed, such (1) aggregation of multicast addresses into "larger" multicast addresses, (2) support of a routing hierarchy for geocasting.
4.2 Exchanging destination area information

Until all routers in the Internet are geo-aware, or until a sufficient level of multicast address aggregation has been achieved to have a manageable total number of multicast addresses, we need a way for the source node to reach the (right) first geo-aware access router, e.g., RSU, (over the standard Internet). In addition to that the destination area specification needs to be exchanged at this first geo-aware access router. This can be achieved only if there is precise knowledge about the location of this destination node. The destination area specification has to be carried in the packet, using one of the following options:
  o) Specify this information in the IP destination address (tunneled in wired Internet)
  o) Use IP header extensions (not processed by standard Internet routers)
  o) Carry this information in the application layer header

4.3 Lookup and translation of destination area to IP address

When a source needs to disseminate information in a destination area it should lookup and translate the destination area into a standard IPv6 address of the first geo-aware access router, e.g., RSU, which is routable in the standard Internet.

The destination area can be specified by an application at the source, and does not have to coincide with known (predefined) areas, e.g., corresponding with the coverage area of an AR (e.g., RSU), or with the area covered by a predefined multicast address. This can be realized using location databases that provide the mapping between the destination area and the IPv6 address of the first geo-aware access router, e.g., RSU. Examples of such location databases are:
  o) Application specific location database
  o) DNS extended with location records and queries
  o) Table of known multicast addresses

4.4 Updating the location database

The location databases that stores the mapping between the destination areas and the IPv6 addresses of the first geo-aware access router, e.g., RSU, need to be dynamically maintained and be up to date. Meaning that whenever new destination areas are identified or when the mapping between the stored destination areas and the associated IPv6 addresses change the location database needs to be updated.

4.5 Support of Internet-wide geo-routing

By using Internet-wide geo-routing the data packets that are generated by source nodes placed anywhere in the Internet are able to be forwarded over multiple hops by using the position of the destination node(s) and the positions of intermediate nodes for the routing decisions.
Several geo-routing protocols have been defined by other standardization bodies, e.g., ETSI ITS, however, these geo-routing protocols are not designed for Internet-wide geo-networking.

5. Possible solutions

This section presents two possible ways of how the Intern-wide geo-networking solution can be designed. These solutions are the extended DNS and GeoServer. The extended DNS solution uses GPS coordinates to address geo-location. However, also other types of coordinates, such as the Galileo coordinates could be used for this purpose.

5.1 Extended DNS

One of the ingredients for Internet-wide geo-networking is a (distributed) database, able to resolve a geographical area to relevant IP addresses. Source nodes wishing to send geo-networking packets can then resolve the destination area of (a flow of) packets to a number of IP addresses, and send the packets to these destination addresses.

One direction for solutions is to extend the DNS system for this purpose, see [FiHe11]. Rather than modifying the DNS protocol, requiring new top level domains or requiring changes in the routing behavior of today’s Internet, this proposal is relying on the use DNS LOC (location) resource records defined in the [RFC1876]. Through the use of LOC records, geographical information about hosts, networks, and subnets can be stored in the DNS files. By performing then forward DNS lookups, geographical information about hosts or domains can be obtained. Current implementation of DNS, such as NSD, support LOC records to be inserted in the master file. This LOC record can then be used to specify the location of an end-host, the coverage area of an access router or access point, or the area in which the members of a multicast group are spread. The key point in this proposal is the use of LOC records as primary key in the forward DNS lookup in order to return IP addresses associated with geographical locations. In other words, we introduce a new primary key into DNS besides the already existing ones (hostnames and IP addresses). The extended version of DNS extends the DNS server with capabilities to handle queries for an area within a domain. Upon receiving a query with such a specified area, the extended DNS server should return resource records for all names for which the area specified in a LOC record overlaps with the area specified in the query, and are also sub-domains of the domain specified in the query.

These addresses can then be used by the source as destination address for its geocast packets.

A possible format for a query is to replace the lowest-level subdomain by a location description:

"{dlat [mlat [slat [mslat]]] "N"|"S" dlon [mlon [ slon [ mslon]]] "E"|"W" alt["m"] size["m"]}".domain
Here, dlat, mlat, slat and mslat specify the latitude of the center of the destination area in degree, minute, second, and millisecond, North ("N") or South ("S") respectively. Similarly, dlon, mlon, slon and mslon specify the longitude of the center of the destination area in degree, minute, second, and millisecond East ("E") or West ("W") respectively. Further, alt is the altitude in meters; size the (radius) size of the destination area in meters and domain specifies the domain to search in. Such an approach scopes geographical queries to a certain domain. In order to allow for name servers to delegate location queries to servers responsible for subdomains, for each delegated subdomain the latter servers must maintain a bounding box of their subdomains and make sure that also their parent server has its up-to-date bounding box. To this end, a new record type (Bounding Box) BND is used in this proposal.

Dynamic DNS update, as specified in [RFC2136] can be used to update BND and LOC records. Different levels of granularity are possible w.r.t. location representation in DNS.
If LOC records are stored for individual end-hosts, a significant load for dynamic updates of LOC records may be caused by mobile nodes. Alternatively, (stationary) access routers or access points may store a LOC record specifying their coverage area, and forward geocast packets to their coverage area. As a third alternative, multicast addresses may be used to represent areas, allowing host to subscribe to an area-specific multicast address ([GEONET]).

Note: if the destination location is somehow specified in the packet, additional packet filtering can be done by destination hosts, using their exact, current location.

5.1.1 Dynamic IP address-to-geographical Address Resolution

A method similar to the name resolution (DNS) method can be provided. The user of this method may query a server in this way: it provides an IP address and it obtains in return the geographical coordinates of where the interface assigned that IP address is situated, or vice-versa. The method should also work for groups of IP addresses (prefixes) and three-dimensional regions.

5.2 GeoServer

A design approach for Internet-wide geo-networking is to introduce a new network element that serves as a message reflector to facilitate the communication among vehicles. This network element functions as a server. It processes incoming messages from each vehicle, aggregates these messages when appropriate, and redistributes the messages to other vehicles. Since this server is typically responsible for a geographical area, it is termed GeoServer. The main functionality of a GeoServer is to provide vehicles with geographical-related services such as for traffic safety and traffic efficiency & management and infotainment-type of applications. The GeoServer is linked to an application server; both might be co-located. The application scenario is illustrated in Figure 3.

Applications may work vehicle or AppServer-triggered. In a typical vehicle-triggered scenario, the vehicle may detect road works or an obstacle by any means (local sensors, communication over other media or user input), triggers a message and sends it to the GeoServer. The GeoServer can either forwards the messages directly to the destination area or involve the AppServer for information aggregation before forwarding the data. In the GeoServer-triggered scenario, the application server acts as originator of a message, based on data aggregation or information from a traffic management center or static configuration.

The scenario requires three main communication tasks [ITSWC2012], [WANG2013]: location updates, event reporting and geographical messaging (GeoMessaging). Location updates are periodically sent from the vehicle to the GeoServer. Their transmission can be triggered query-based, time-based, distance-based, grid-based (or a combination) (see [ITSWC2011]). If the driver or the vehicle detects an event, then the event will be reported to the GeoServer.
The GeoServer enables the distribution of messages to vehicles in a geographical area. The GeoServer also takes care of periodic re-transmission of the warning during the lifetime of the event, i.e. the repetition of the messages in order to keep the information alive in the destination area when vehicles start their journey or enter the area.

Figure 3: GeoServer scenario

6. Security Considerations

According to requirement 3.8.1, the Internet-wide geo-networking solution MUST support security objectives for all supported communication modes. Security objectives particularly include integrity, privacy and non-repudiation and SHOULD protect the network and transport layer protocol headers. In addition the Internet-wide geo-networking solution MUST also protect privacy, i.e. provide confidentiality to personal data such as node identifier and location.

7. IANA Considerations

No IANA considerations are considered in this document.

8. Acknowledgments

We would like to thank the members of the IETF ITS community for their comments and discussions. Furthermore, we would like to thank the authors of the Internet draft [draft-karagiannis-traffic-safety-requirements], G. Karagiannis, R. Wakikawa, J. Kenney, C. J. Bernardos and F. Kargl, since some parts of the traffic safety application descriptions are taken from the mentioned draft.
9. Normative References

10. Informative References


[ETSI-EN-302-636-4-1] ETSI TS 102 636-4-1, "Intelligent Transport Systems (ITS); Vehicular communications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality", ETSI specification ETSI TS 102 636-4-1 V1.1.1, June 2011


11. Authors’ Address

Georgios Karagiannis
University of Twente
P.O. Box 217
7500 AE Enschede,
The Netherlands
EMail: g.karagiannis@utwente.nl

Geert Heijenk
University of Twente
P.O. Box 217
7500 AE Enschede,
The Netherlands
EMail: geert.heijenkg@utwente.nl

Andreas Festag
Technical University Dresden & NEC Laboratories Europe
Germany
Email: andreas.festag@ifn.et.tu-dresden.de?

Alexandru Petrescu
CEA
Communicating Systems Laboratory, Point Courrier 173
Palaiseau,  F-91120
France
Phone: +33(0)169089223
Email: alexandru.petrescu@cea.fr

Alison Chaiken
Mentor Embedded Software Division
46871 Bayside Parkway
Fremont, CA 94538
USA   Email: alison@she-devel.com
Transmission of IPv6 Packets over IEEE 802.11p Networks
draft-petrescu-ipv6-over-80211p-00.txt

Abstract

In order to transmit IPv6 packets on IEEE 802.11p networks there is a need to define a few parameters such as the recommended Maximum Transmission Unit size, the header format preceding the IPv6 base header, the Type value within it, and others. This document describes these parameters for IPv6 and IEEE 802.11p networks; it portrays the layering of IPv6 on 802.11p similarly to other known 802.11 and Ethernet layers, by using an existing Ethernet Adaptation Layer.

In addition, the document attempts to list what is different in 802.11p compared to more ‘traditional’ 802.11a/b/g/n layers, layers over which IPv6 protocols run ok. Most notably, the operation outside the context of a BSS (OCB) has impact on IPv6 handover behaviour and on IPv6 security.

An example of an IPv6 packet captured while transmitted over an IEEE 802.11p link is given.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
Table of Contents

1. Introduction ................................. 4
2. Terminology .................................. 5
3. Communication Scenarios where IEEE 802.11p Links are Used 6
4. Aspects introduced by 802.11p to 802.11 ................ 6
5. Layering of IPv6 over 802.11p as over Ethernet ............. 9
   5.1. Maximum Transmission Unit (MTU) .................. 9
   5.2. Frame Format ................................... 9
       5.2.1. Ethernet Adaptation Layer .................. 10
   5.3. Link-Local Addresses ......................... 11
   5.4. Address Mapping .............................. 11
   5.5. Stateless Autoconfiguration ..................... 11
   5.6. Subnet Structure ............................. 12
5. Handovers between OCB links ........................... 13
7. Example IPv6 Packet captured over a IEEE 802.11p link ..... 15
   7.1. Capture in Monitor Mode ....................... 15
   7.2. Capture in Normal Mode ....................... 18
8. Security Considerations ................................ 20
9. IANA Considerations ................................ 21
10. Acknowledgements .................................. 21
11. References ...................................... 21
    11.1. Normative References ......................... 21
    11.2. Informative References ....................... 22
Appendix A. ChangeLog .............................. 24
Appendix B. Explicit Prohibition of IPv6 on Channels Related to ITS Scenarios using 802.11p Networks – an Analysis ............................... 24
Appendix C. Changes Needed on a software driver 802.11a to become a 802.11p driver ....................... 25
Authors’ Addresses ................................. 26
1. Introduction

This document describes the transmission of IPv6 packets on IEEE 802.11p networks. This involves the layering of IPv6 networking on top of the IEEE 802.11p MAC layer (with an LLC layer). Compared to running IPv6 over the Ethernet MAC layer, or over other 802.11 links, there is no modification required to the standards: IPv6 works fine directly over 802.11p too (with an LLC layer).

As an overview, we illustrate how an IPv6 stack runs over 802.11p by layering different protocols on top of each other. The IPv6 Networking is layered on top of the IEEE 802.2 Logical-Link Control (LLC) layer; this is itself layered on top of the 802.11p MAC; this layering illustration is similar to that of running IPv6 over 802.2 LLC over the 802.11 MAC, or over Ethernet MAC.

```
+-----------------+      +-----------------+
|       ...       |      |       ...       |
+-----------------+      +-----------------+
| IPv6 Networking |      | IPv6 Networking |
+-----------------+      +-----------------+
|    802.2 LLC    |  vs. |    802.2 LLC    |
+-----------------+      +-----------------+
|   802.11p MAC   |      |   802.11b MAC   |
+-----------------+      +-----------------+
|   802.11p PHY   |      |   802.11b PHY   |
+-----------------+      +-----------------+
```

But, there are several deployment considerations to optimize the performances of running IPv6 over 802.11p (e.g. in the case of handovers between 802.11p Access Points, or the consideration of using the IP security layer).

We briefly introduce the vehicular communication scenarios where IEEE 802.11p links are used. This is followed by a description of differences in specification terms, between 802.11p and 802.11a/b/g/n (and the same differences expressed in terms of requirements to software implementation are listed in Appendix C.)

The document then concentrates on the parameters of layering IPv6 over 802.11p as over Ethernet: MTU, Frame Format, Interface Identifier, Address Mapping, State-less Address Auto-configuration. The values of these parameters are precisely the same as IPv6 over Ethernet [RFC2464]: the recommended value of MTU to be 1500 octets, the Frame Format containing the Type 0x86DD, the rules for forming an
As an example, these characteristics of layering IPv6 straight over LLC over 802.11p MAC are illustrated by dissecting an IPv6 packet captured over a 802.11p link; this is described in the section titled "Example of IPv6 Packet captured over an IEEE 802.11p link".

A few points can be considered as different, although they do not seem required in order to have a working implementation of IPv6-over-802.11p. These points are consequences of the OCB operation which is particular to 802.11p (Outside the Context of a BSS). The handovers between OCB links need specific behaviour for IP Router Advertisements, or otherwise 802.11p’s Time Advertisement, or of higher layer messages such as the 'Basic Safety Message' (in the US) or the 'Cooperative Awareness Message' (in the EU) or the 'WAVE Routing Advertisement'; second, the IP security should be considered of utmost importance, since OCB means that 802.11p is stripped of all 802.11 link-layer security; a small additional security aspect which is shared between 802.11p and other 802.11 links is the privacy concerns related to the address formation mechanisms. These two points (OCB handovers and security) are described each in a section of its own: OCB handovers in Section 6 and security in Section 8.

In the published literature, the operation of IPv6 for WAVE (Wireless Access In Vehicular Environments) was described in [ipv6-wave].

In standards, the operation of IPv6 as a 'data plane' over 802.11p is specified in [ieeep1609.3-D9-2010]. For example, it mentions that "Networking services also specifies the use of the Internet protocol IPv6, and supports transport protocols such as UDP and TCP. [...] A Networking Services implementation shall support either IPv6 or WSMP or both." and "IP traffic is sent and received through the LLC sublayer as specified in [...]". Also, the operation of IPv6 over a GeoNetworking layer and over G5 is described in [etsi-302663-v1.2.1p-2013].

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

RSU stands for Road Side Unit.
3. Communication Scenarios where IEEE 802.11p Links are Used

The IEEE 802.11p Networks are used for vehicular communications, as ’Wireless Access in Vehicular Environments’. The IP communication scenarios for these environments have been described in several documents, among which we refer the reader to one recently updated [I-D.petrescu-its-scenarios-reqs], about scenarios and requirements for IP in Intelligent Transportation Systems.

4. Aspects introduced by 802.11p to 802.11

The link 802.11p is specified in IEEE Std 802.11p(TM)-2010 [ieee802.11p-2010] as an amendment to the 802.11 specifications, titled "Amendment 6: Wireless Access in Vehicular Environments". Since then, these 802.11p amendments have been included in IEEE 802.11(TM)-2012 [ieee802.11-2012], titled "IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications"; the modifications are diffused throughout various sections (e.g. 802.11p’s Time Advertisement message is described in section ’Frame formats’, and the operation outside the context of a BSS described in section ’MLME’).

In order to delineate the aspects introduced by 802.11p to 802.11, we refer to the earlier [ieee802.11p-2010]. The amendment is concerned with vehicular communications, where the wireless link is similar to that of Wireless LAN (using a PHY layer specified by 802.11a/b/g/n), but which needs to cope with the high mobility factor inherent in scenarios of communications between moving vehicles, and between vehicles and fixed infrastructure deployed along roads. Whereas ’p’ is a letter just like ’a, b, g’ and ’n’ are, ’p’ is concerned more with MAC modifications, and a little with PHY modifications; the others are mainly about PHY modifications; it is possible in practice to combine a ’p’ MAC with an ’a’ PHY by operating outside the context of a BSS with OFDM at 5.4GHz.

The 802.11p links are specified to be compatible as much as possible with the behaviour of 802.11a/b/g/n and future generation IEEE WLAN links. From the IP perspective, an 802.11p MAC layer offers practically the same interface to IP as the WiFi and Ethernet layers do (802.11a/b/g/n and 802.3).

To support this similarity statement (IPv6 is layered on top of LLC on top of 802.11p similarly as on top of LLC on top of 802.11a/b/g/n, and as on top of LLC on top of 802.3) it is useful to analyze the 802.11p differences compared to non-p 802.11 specifications. Whereas
the 802.11p amendment specifies relatively complex and numerous changes to the MAC layer (and very little to the PHY layer), we note here only a few characteristics which may be important for an implementation transmitting IPv6 packets on 802.11p links.

In the list below, the only 802.11p fundamental points which influence IPv6 are the OCB operation and the 12Mbit/s maximum which may be afforded by the IPv6 applications.

- **Operation Outside the Context of a BSS (OCB):** the 802.11p links are operated without a Basic Service Set (BSS). This means that the messages Beacon, Association Request/Response, Authentication Request/Response, and similar, are not used. The used identifier of BSS (BSSID) has a hexadecimal value always ff:ff:ff:ff:ff:ff (48 '1' bits, or the 'wildcard' BSSID), as opposed to an arbitrary BSSID value set by administrator (e.g. 'My-Home-AccessPoint'). The OCB operation - namely the lack of beacon-based scanning and lack of authentication - has potentially strong impact on the use of protocol Mobile IPv6 and protocols for IP layer security.

- **Timing Advertisement:** is a new message defined in 802.11p, which does not exist in 802.11a/b/g/n. This message is used by stations to inform other stations about the value of time. It is similar to the time as delivered by a GNSS system (Galileo, GPS, ...) or by a cellular system. This message is optional for implementation. At the date of writing, an experienced reviewer considers that currently no field testing has used this message. Another implementor considers this feature implemented in an initial manner. In the future, it is speculated that this message may be useful for very simple devices which may not have their own hardware source of time (Galileo, GPS, cellular network), or by vehicular devices situated in areas not covered by such network (in tunnels, underground, outdoors but shaded by foliage or buildings, in remote areas, etc.)

- **Frequency range:** this is a characteristic of the PHY layer, with almost no impact to the interface between MAC and IP. However, it is worth considering that the frequency range is regulated by a regional authority (ARCEP, ETSI, FCC, etc.); as part of the regulation process, specific applications are associated with specific frequency ranges. In the case of 802.11p, the regulator associates a set of frequency ranges, or slots within a band, to the use of applications of vehicular communications, in a band known as "5.9GHz". This band is "5.9GHz" which is different than the bands "2.4GHz" or "5GHz" used for the Wireless LAN. But, as with Wireless LAN, the operation of 802.11p in "5.9GHz" bands is exempt from owning a license in EU (in US the 5.9GHz is a licensed band of spectrum; for the the fixed infrastructure an explicit FCC
is required; for an onboard device a 'licensed-by-rule' concept applies: rule certification conformity is required); however technical conditions are different than those of the bands "2.4GHz" or "5GHz". On one hand, the allowed power levels, and implicitly the maximum allowed distance between vehicles, is of 33dBm for 802.11p (in Europe), compared to 20 dBm for Wireless LAN 802.11a/b/g/n; this leads to maximum distance of approximately 1km, compared to approximately 50m. On another hand, specific conditions related to congestion avoidance, jamming avoidance, and radar detection are imposed on the use of DSRC (in US) and on the use of frequencies for Intelligent Transportation Systems (in EU), compared to Wireless LAN (802.11a/b/g/n).

- Explicit prohibition of IPv6 on some channels relevant for the PHY of IEEE 802.11p, as opposed to IPv6 not being prohibited on any channel on which 802.11a/b/g/n runs; for example, IPv6 is prohibited on the 'Control Channel' (number 178 at FCC, and 180 at ETSI); for a detailed analysis of FCC and ETSI prohibition of IP in particular channels see Appendix B.

- 'Half-rate' encoding: as the frequency range, this parameter is related to PHY, and thus has not much impact on the interface between the IP layer and the MAC layer. The standard IEEE 802.11p uses OFDM encoding at PHY, as other non-b 802.11 variants do. This considers 20MHz encoding to be 'full-rate' encoding, as the earlier 20MHz encoding which is used extensively by 802.11b. In addition to the full-rate encoding, the OFDM rates also involve 5MHz and 10MHz. The 10MHz encoding is named 'half-rate'. The encoding dictates the bandwidth and latency characteristics that can be afforded by the higher-layer applications of IP communications. The half-rate means that each symbol takes twice the time to be transmitted; for this to work, all 802.11 software timer values are doubled. With this, in certain channels of the "5.9GHz" band, a maximum bandwidth of 12Mbit/s is possible, whereas in other "5.9GHz" channels a minimal bandwidth of 1Mbit/s may be used. It is worth mentioning the half-rate encoding is an optional feature characteristic of OFDM PHY (compared to 802.11b's full-rate 20MHz), used by 802.11a before 802.11p used it. In addition to the half-rate (10MHz) used by 802.11p in some channels, some other 802.11p channels may use full-rate (20MHz) or quarter-rate (?) (5MHz) encoding instead.

Other aspects particular to 802.11p which are also particular to 802.11 (e.g. the 'hidden node' operation) may have an influence on the use of transmission of IPv6 packets on 802.11p networks. The subnet structure which may assumed in 802.11p networks is strongly influenced by the mobility of vehicles.
5. Layering of IPv6 over 802.11p as over Ethernet

5.1. Maximum Transmission Unit (MTU)

The default MTU for IPv6 packets on 802.11p is 1500 octets. It is the same value as IPv6 packets on Ethernet links, as specified in [RFC2464]. This value of the MTU respects the recommendation that every link in the Internet must have a minimum MTU of 1280 octets (stated in [RFC2460], and the recommendations therein, especially with respect to fragmentation).

5.2. Frame Format

IPv6 packets are transmitted over 802.11p as standard Ethernet packets. As with all 802.11 frames, an Ethernet adaptation layer is used with 802.11p as well. This Ethernet Adaptation Layer 802.11-to-Ethernet is described in Section 5.2.1. The Ethernet Type code (EtherType) is 0x86DD (hexadecimal 86DD, or otherwise #86DD).

The Frame format for transmitting IPv6 on 802.11p networks is the same as transmitting IPv6 on Ethernet networks, and is described in section 3 of [RFC2464]. For sake of completeness, the frame format for transmitting IPv6 over Ethernet is illustrated below:
5.2.1. Ethernet Adaptation Layer

In general, an ‘adaptation’ layer is inserted between a MAC layer and the Networking layer. This is used to transform some parameters between their form expected by the IP stack and the form provided by the MAC layer. For example, an 802.15.4 adaptation layer may perform fragmentation and reassembly operations on a MAC whose maximum Packet Data Unit size is smaller than the minimum MTU recognized by the IPv6 Networking layer. Other examples involve link-layer address transformation, packet header insertion/removal, and so on.

An Ethernet Adaptation Layer makes an 802.11 MAC look to IP Networking layer as a more traditional Ethernet layer. At reception, this layer takes as input the IEEE 802.11 Data Header and the Logical-Link Layer Control Header and produces an Ethernet II Header. At sending, the reverse operation is performed.
The Receiver and Transmitter Address fields in the 802.11 Data Header contain the same values as the Destination and the Source Address fields in the Ethernet II Header, respectively. The value of the Type field in the LLC Header is the same as the value of the Type field in the Ethernet II Header. The other fields in the Data and LLC Headers are not used by the IPv6 stack.

5.3. Link-Local Addresses

The link-local address of an 802.11p interface is formed in the same manner as on an Ethernet interface. This manner is described in section 5 of [RFC2464].

5.4. Address Mapping

For unicast as for multicast, there is no change from the unicast and multicast address mapping format of Ethernet interfaces, as defined by sections 6 and 7 of [RFC2464].

(However, there is discussion about geography, networking and IPv6 multicast addresses: geographical dissemination of IPv6 data over 802.11p may be useful in traffic jams, for example).

5.5. Stateless Autoconfiguration

The Interface Identifier for an 802.11p interface is formed using the same rules as the Interface Identifier for an Ethernet interface; this is described in section 4 of [RFC2464]. No changes are needed, but some care must be taken when considering the use of the SLAAC procedure.

For example, the Interface Identifier for an 802.11p interface whose built-in address is, in hexadecimal:
The bits in the interface identifier have no generic meaning and the identifier should be treated as an opaque value. The bits 'Universal' and 'Group' in the identifier of an 802.11p interface are significant, as this is a IEEE link-layer address. The details of this significance are described in [I-D.ietf-6man-ug].

As with all Ethernet and 802.11 interface identifiers, the identifier of an 802.11p interface may involve privacy risks. A vehicle embarking an On-Board Unit whose egress interface is 802.11p may expose itself to eavesdropping and subsequent correlation of data; this may reveal data considered private by the vehicle owner. The address generation mechanism should consider these aspects, as described in [I-D.ietf-6man-ipv6-address-generation-privacy].

5.6. Subnet Structure

In this section the subnet structure may be described: the addressing model (are multi-link subnets considered?), address resolution, multicast handling, packet forwarding between IP subnets. Alternatively, this section may be spinned off into a separate document.

The 802.11p networks, much like other 802.11 networks, may be considered as 'ad-hoc' networks. The addressing model for such networks is described in [RFC5889].

The SLAAC procedure makes the assumption that if a packet is retransmitted a fixed number of times (typically 3, but it is link dependent), any connected host receives the packet with high probability. On ad-hoc links (when 802.11p is operated in OCB mode, the link can be considered as 'ad-hoc'), both the hidden terminal problem and mobility-range considerations make this assumption incorrect. Therefore, SLAAC should not be used when address collisions can induce critical errors in upper layers.

Some aspects of multi-hop ad-hoc wireless communications which are relevant to the use of 802.11p (e.g. the 'hidden' node) are described in [I-D.baccelli-multi-hop-wireless-communication].
6. Handovers between OCB links

A station operating IEEE 802.11p in the 5.9 GHz band in US or EU is required to send data frames outside the context of a BSS. In this case, the station does not utilize the IEEE 802.11 authentication, association, or data confidentiality services. This avoids the latency associated with establishing a BSS and is particularly suited to communications between mobile stations or between a mobile station and a fixed one playing the role of the default router (e.g. a fixed Road-Side Unit a.k.a RSU acting as an infrastructure router).

The process of movement detection is described in section 11.5.1 of [RFC6275]. In the context of 802.11p deployments, detecting movements between two adjacent RSUs becomes harder for the moving stations: they cannot rely on Layer-2 triggers (such as L2 association/de-association phases) to detect when they leave the vicinity of an RSU and move within coverage of another RSU. In such case, the movement detection algorithms require other triggers. We detail below the potential other indications that can be used by a moving station in order to detect handovers between OCB ("Outside the Context of a BSS") links.

A movement detection mechanism may take advantage of positioning data (latitude and longitude).

Mobile IPv6 [RFC6275] specifies a new Router Advertisement option called the "Advertisement Interval Option". It can be used by an RSU to indicate the maximum interval between two consecutive unsolicited Router Advertisement messages sent by this RSU. With this option, a moving station can learn when it is supposed to receive the next RA from the same RSU. This can help movement detection: if the specified amount of time elapses without the moving station receiving any RA from that RSU, this means that the RA has been lost. It is up to the moving node to determine how many lost RAs from that RSU constitutes a handover trigger.

In addition to the Mobile IPv6 "Advertisement Interval Option", the Neighbor Unreachability Detection (NUD) [RFC4861] can be used to determine whether the RSU is still reachable or not. In this context, reachability confirmation would basically consist in receiving a Neighbor Advertisement message from a RSU, in response to a Neighbor Solicitation message sent by the moving station. The RSU should also configure a low Reachable Time value in its RA in order to ensure that a moving station does not assume an RSU to be reachable for too long.

The Mobile IPv6 "Advertisement Interval Option" as well as the NUD procedure only help knowing if the RSU is still reachable by the
moving station. It does not provide the moving station with information about other potential RSUs that might be in range. For this purpose, increasing the RA frequency could reduce the delay to discover the next RSU. The Neighbor Discovery protocol [RFC4861] limits the unsolicited multicast RA interval to a minimum of 3 seconds (the MinRtrAdvInterval variable). This value is too high for dense deployments of Access Routers deployed along fast roads. The protocol Mobile IPv6 [RFC6275] allows routers to send such RA more frequently, with a minimum possible of 0.03 seconds (the same MinRtrAdvInterval variable): this should be preferred to ensure a faster detection of the potential RSUs in range.

If multiple RSUs are in the vicinity of a moving station at the same time, the station may not be able to choose the "best" one (i.e. the one that would afford the moving station spending the longest time in its vicinity, in order to avoid too frequent handovers). In this case, it would be helpful to base the decision on the signal quality (e.g. the RSSI of the received RA provided by the radio driver). A better signal would probably offer a longer coverage. If, in terms of RA frequency, it is not possible to adopt the recommendations of protocol Mobile IPv6 (but only the Neighbor Discovery specification ones, for whatever reason), then another message than the RA could be emitted periodically by the Access Router (provided its specification allows to send it very often), in order to help the Host determine the signal quality. One such message may be the 802.11p’s Time Advertisement, or higher layer messages such as the "Basic Safety Message" (in the US) or the "Cooperative Awareness Message " (in the EU), that are usually sent several times per second. Another alternative replacement for the IPv6 Router Advertisement may be the message ‘WAVE Routing Advertisement’ (WRA), which is part of the WAVE Service Advertisement and which may contain optionally the transmitter location; this message is described in section 8.2.5 of [ieeep1609.3-D9-2010].

Once the choice of the default router has been performed by the moving node, it can be interesting to use Optimistic DAD [RFC4429] in order to speed-up the address auto-configuration and ensure the fastest possible Layer-3 handover.

To summarize, efficient handovers between OCB links can be performed by using a combination of existing mechanisms. In order to improve the default router unreachability detection, the RSU and moving stations should use the Mobile IPv6 "Advertisement Interval Option" as well as rely on the NUD mechanism. In order to allow the moving station to detect potential default router faster, the RSU should also be able to be configured with a smaller minimum RA interval such as the one recommended by Mobile IPv6. When multiple RSUs are available at the same time, the moving station should perform the
handover decision based on the signal quality. Finally, optimistic DAD can be used to reduce the handover delay.

7. Example IPv6 Packet captured over a IEEE 802.11p link

We remind that a main goal of this document is to make the case that IPv6 works fine over 802.11p networks. Consequently, this section is an illustration of this concept and thus can help the implementer when it comes to running IPv6 over IEEE 802.11p. By way of example we show that there is no modification in the headers when transmitted over 802.11p networks - they are transmitted like any other 802.11 and Ethernet packets.

We describe an experiment of capturing an IPv6 packet captured on an 802.11p link. In this experiment, the packet is an IPv6 Router Advertisement. This packet is emitted by a Router on its 802.11p interface. The packet is captured on the Host, using a network protocol analyzer (e.g. Wireshark); the capture is performed in two different modes: direct mode and ‘monitor’ mode. The topology used during the capture is depicted below.

```
##########                    #######
#        #                    #      #
# Router #--------------------# Host #
#        #    802.11p Link    #      #
##########                    #######
/   \                         o  o
```

During several capture operations running from a few moments to several hours, no message relevant to the BSSID contexts were captured (no Association Request/Response, Authentication Req/Resp, Beacon). This shows that the operation of 802.11p is outside the context of a BSSID.

Overall, the captured message is precisely similar with a capture of an IPv6 packet emitted on a 802.11b interface. The contents are precisely similar.

7.1. Capture in Monitor Mode

The IPv6 RA packet captured in monitor mode is illustrated below. The radio tap header provides more flexibility for reporting the characteristics of frames. The Radiotap Header is prepended by this particular stack and operating system on the Host machine to the RA packet.
packet received from the network (the Radiotap Header is not present on the air). The implementation-dependent Radiotap Header is useful for piggybacking PHY information from the chip’s registers as data in a packet understandable by userland applications using Socket interfaces (the PHY interface can be, for example: power levels, data rate, ratio of signal to noise).

The packet present on the air is formed by IEEE 802.11 Data Header, Logical Link Control Header, IPv6 Base Header and ICMPv6 Header.

Radiotap Header v0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|Header Revision| Header Pad  | Header length          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
|                                Present flags                                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|| Data Rate | Pad
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|

IEEE 802.11 Data Header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
| Type/Subtype and Frame Ctrl  | Duration               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
| Receiver Address...          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
... Receiver Address | Transmitter Address...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
... Transmitter Address
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
| BSS Id...                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
... BSS Id | Frag Number and Seq Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|

Logical-Link Control Header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
| DSAP |I| SSAP |C Control field | Org. code...               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
... Organizational Code | Type                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|

IPv6 Base Header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
|Version| Traffic Class | Flow Label |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
The value of the Data Rate field in the Radiotap header is set to 6 Mb/s. This indicates the rate at which this RA was received.

The value of the Transmitter address in the IEEE 802.11 Data Header is set to a 48bit value. The value of the destination address is 33:33:00:00:00:1 (all-nodes multicast address). The value of the BSSID field is ff:ff:ff:ff:ff:ff, which is recognized by the network protocol analyzer as being "broadcast". The Fragment number and sequence number fields are together set to 0x90C6.

The value of the Organization Code field in the Logical-Link Control Header is set to 0x0, recognized as "Encapsulated Ethernet". The value of the Type field is 0x86DD (hexadecimal 86DD, or otherwise #86DD), recognized as "IPv6".
A Router Advertisement is periodically sent by the router to multicast group address ff02::1. It is an icmp packet type 134. The IPv6 Neighbor Discovery's Router Advertisement message contains an 8-bit field reserved for single-bit flags, as described in [RFC4861].

The IPv6 header contains the link local address of the router (source) configured via EUI-64 algorithm, and destination address set to ff02::1. Recent versions of network protocol analyzers (e.g. Wireshark) provide additional informations for an IP address, if a geolocalization database is present. In this example, the geolocalization database is absent, and the "GeoIP" information is set to unknown for both source and destination addresses (although the IPv6 source and destination addresses are set to useful values). This "GeoIP" can be a useful information to look up the city, country, AS number, and other information for an IP address.

The Ethernet Type field in the logical-link control header is set to 0x86dd which indicates that the frame transports an IPv6 packet. In the IEEE 802.11 data, the destination address is 33:33:00:00:00:01 which is the corresponding multicast MAC address. The BSS id is a broadcast address of ff:ff:ff:ff:ff:ff. Due to the short link duration between vehicles and the roadside infrastructure, there is no need in IEEE 802.11p to wait for the completion of association and authentication procedures before exchanging data. IEEE 802.11p enabled nodes use the wildcard BSSID (a value of all 1s) and may start communicating as soon as they arrive on the communication channel.

7.2. Capture in Normal Mode

The same IPv6 Router Advertisement packet described above (monitor mode) is captured on the Host, in the Normal mode, and depicted below.
Ethernet II Header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
...Destination | Source...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
...Source
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

IPv6 Base Header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Version | Traffic Class | Flow Label |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Length | Next Header | Hop Limit |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Router Advertisement
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type      | Code     | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cur Hop Limit | M | O | Reserved | Router Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reachable Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Retrans Timer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
One notices that the Radiotap Header is not prepended, and that the IEEE 802.11 Data Header and the Logical-Link Control Headers are not present. On another hand, a new header named Ethernet II Header is present.

The Destination and Source addresses in the Ethernet II header contain the same values as the fields Receiver Address and Transmitter Address present in the IEEE 802.11 Data Header in the "monitor" mode capture.

The value of the Type field in the Ethernet II header is 0x86DD (recognized as "IPv6"); this value is the same value as the value of the field Type in the Logical-Link Control Header in the "monitor" mode capture.

The knowledgeable experimenter will no doubt notice the similarity of this Ethernet II Header with a capture in normal mode on a pure Ethernet cable interface.

It may be interpreted that an Adaptation layer is inserted in a pure IEEE 802.11 MAC packets in the air, before delivering to the applications. In detail, this adaptation layer may consist in elimination of the Radiotap, 802.11 and LLC headers and insertion of the Ethernet II header. In this way, it can be stated that IPv6 runs naturally straight over LLC over the 802.11p MAC layer, as shown by the use of the Type 0x86DD, and assuming an adaptation layer (adapting 802.11 LLC/MAC to Ethernet II header).

8. Security Considerations

802.11p does not provide any cryptographic protection, because it operates outside the context of a BSS (no Association Request/Response, no Challenge messages). Any attacker can therefore just sit in the near range of vehicles, sniff the network (just set the interface card’s frequency to the proper range) and perform attacks without needing to physically break any wall. Such a link is way less protected than commonly used links (wired link or protected 802.11).

At the IP layer, IPsec can be used to protect unicast communications, and SeND can be used for multicast communications. If no protection is used by the IP layer, upper layers should be protected. Otherwise, the end-user or system should be warned about the risks they run.

The WAVE protocol stack provides for strong security when using the WAVE Short Message Protocol and the WAVE Service Advertisement
As with all Ethernet and 802.11 interface identifiers, there may exist privacy risks in the use of 802.11p interface identifiers.

9. IANA Considerations

10. Acknowledgements

The authors would like to acknowledge Witold Klaudel, Ryuji Wakikawa, Emmanuel Baccelli, John Kenney, John Moring, Francois Simon, Dan Romascanu, Konstantin Khait and Ralph Droms. Their supportive comments at the early stages enlightened and helped improve the document. More comments from more persons are expected.

11. References

11.1. Normative References

[I-D.ietf-6man-ipv6-address-generation-privacy]

[I-D.ietf-6man-ug]


11.2. Informative References


Appendix A. ChangeLog

The changes are listed in reverse chronological order, most recent changes appearing at the top of the list.

From draft-authors-ipv6-over-80211p-00.txt to draft-authors-ipv6-over-80211p-00.txt:

- first version.

Appendix B. Explicit Prohibition of IPv6 on Channels Related to ITS Scenarios using 802.11p Networks – an Analysis

- IPv6 is prohibited on channel number 178 decimal, named 'Control Channel' at IEEE and FCC. The document [ieeep1609.4-D9-2010] prohibits upfront the use of IPv6 traffic on the Control Channel: 'data frames containing IP datagrams are only allowed on service channels'. The FCC names the Control Channel as being the channel number 178 decimal, and positions it with a 10MHz width from 5885MHz to 5895MHz [fcc-cc]. Other 'Service Channels' are allowed to use IP, but the Control Channel is not.

- The same channel number 178 decimal with 10MHz width (5885MHz to 5895MHz) is considered to be a Service Channel by ETSI and is named 'G5-SCH2' [etsi-302663-v1.2.1p-2013]. This channel is dedicated to 'ITS Road Safety'. Other channels are dedicated to 'ITS road traffic efficiency'. Also, a 'Control Channel G5-CCH' number 180 decimal (not 178) is reserved by ETSI to be 10MHz-width centered on 5900MHz. Compared to FCC, the ETSI makes no upfront statement with respect to IP and particular channels; yet it relates the 'in car Internet' applications ('When nearby a stationary public internet access point (hotspot), application can use standard IP services for applications.') to the 'Non-safety-related ITS application' [etsi-draft-102492-2-v1.1.1-2006]. This means ETSI may forbid IP on the 'ITS Road Safety' channels, but may allow IP on 'ITS road traffic efficiency' channels, or on other 5GHz channels re-used from BRAN (also dedicated to Broadband Radio Access Networks).

- At EU level in ETSI (but not some countries in EU with varying adoption levels) the highest power of transmission of 33 dBm is allowed, but only on two separate 10Mhz-width channels centered on
5900MHz and 5880MHz respectively. It appears IPv6 is not allowed on these channels (in the other 'ITS' channels where IP may be allowed, the levels vary between 20dBm, 23 dBm and 30 dBm; in some of these channels IP is allowed). A high-power of transmission means that vehicles may be distanced more (intuitively, for 33 dBm approximately 2km is possible, and for 20 dBm approximately 50 meter).

Appendix C. Changes Needed on a software driver 802.11a to become a 802.11p driver

The 802.11p amendment modifies both the 802.11 stack’s physical and MAC layers but all the induced modifications can be quite easily obtained by modifying an existing 802.11a ad-hoc stack.

Conditions for a 802.11a hardware to be 802.11p compliant:

- The chip must support the frequency bands on which the regulator recommends the use of ITS communications, for example using IEEE 802.11p layer, in France: 5875MHz to 5925MHz.

- The chip must support the half-rate mode (the internal clock can divided by two).

- The chip transmit spectrum mask must be compliant to the "Transmit spectrum mask" from the IEEE 802.11p amendment (but experimental environments tolerate otherwise).

- The chip should be able to transmit up to 44.8 dBm when used by the US government in the United States, and up to 33 dBm in Europe; other regional conditions apply.

Changes needed on the network stack in OCB mode:

- Physical layer:
  - The chip must use the Orthogonal Frequency Multiple Access (OFDM) encoding mode.
  - The chip must be set in half-mode rate mode (the internal clock frequency is divided by two).
  - The chip must use dedicated channels and should allow the use of higher emission powers. This may require modifications to the regulatory domains rules, if used by the kernel to enforce local specific restrictions. Such modifications must respect the location-specific laws.
MAC layer:

* All management frames (beacons, join, leave, etc...) emission and reception must be disabled except for frames of subtype Action and Timing Advertisement (defined below).

* No encryption key or method must be used.

* Packet emission and reception must be performed as in ad-hoc mode, using the wildcard BSSID (ff:ff:ff:ff:ff:ff).

* The functions related to joining a BSS (Association Request/Response) and for authentication (Authentication Request/Reply, Challenge) are not called.

* The beacon interval is always set to 0 (zero).

* Timing Advertisement frames, defined in the amendment, should be supported. The upper layer should be able to trigger such frames emission and to retrieve information contained in received Timing Advertisements.

Authors’ Addresses

Alexandru Petrescu
CEA
http://www.cea.fr,

Phone:
Email: Alexandru.Petrescu@cea.fr

Romain Kuntz
IP Flavors
http://www.ipflavors.com,

Phone:
Email: r.kuntz@ipflavors.com
Pierre Pfister
changing

Phone:
Email: pierre.pfister@polytechnique.org

Nabil Benamar
Moulay Ismail University
Morocco

Phone:
Email: benamar73@gmail.com