EEMCS

Home > Publications
Home University of Twente
Education
Research
Prospective Students
Jobs
Publications
Intranet (internal)
 
 Nederlands
 Contact
 Search
 Organisation

EEMCS EPrints Service


23068 Artificial intelligence based event detection in wireless sensor networks
Home Policy Brochure Browse Search User Area Contact Help

Bahrepour, M. (2013) Artificial intelligence based event detection in wireless sensor networks. PhD thesis, University of Twente. CTIT Ph.D.-thesis Series No. 12-241 ISBN 978-90-365-3502-1

Cover

Full text available as:

PDF (Thesis)

78767 Kb
Open Access



Official URL: http://dx.doi.org/10.3990/1.9789036535021

Abstract

Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more recent applications is on fast and reliable identification of out-of-ordinary situations and events. This new functionality of wireless sensor networks is known as event detection. Due to the fact that collecting all sensor data centrally to perform event detection is inefficient in many occasions, the new trend in event detection in wireless sensor networks is to perform detection in the network. Design of in-network event detection methods for wireless sensor networks is by no means straightforward, as it needs to efficiently cope with various challenges and concerns including unreliability, heterogeneity, adaptability, and resource constraints. In this thesis, we tackle this problem by proposing fast, accurate, in-network, and intelligent event detection methods using artificial intelligence (AI) and machine learning (ML) approaches. To this end, the main objective of this thesis is to analyze, investigate applicability, and optimize artificial intelligence (AI) and machine learning (ML) methods for efficient, distributed, local and in-network event detection in wireless sensor networks (WSNs).

Item Type:PhD Thesis
Supervisors:Havinga, P.J.M.
Assistant Supervisors:Meratnia, N.
Research Group:EWI-PS: Pervasive Systems
Research Program:CTIT-WiSe: Wireless and Sensor Systems
Research Project:SENSEI: Integrating the PhySical with the Digital World of the Network of the Future, IS-ACTIVE: Inertial Sensing Systems for Advanced Chronic Condition Monitoring and Risk Prevention
ID Code:23068
Deposited On:20 February 2013
More Information:statistics

Export this item as:

To correct this item please ask your editor

Repository Staff Only: edit this item