Home > Publications
Home University of Twente
Prospective Students
Intranet (internal)

EEMCS EPrints Service

21864 The average covering tree value for directed graph games
Home Policy Brochure Browse Search User Area Contact Help

Khmelnitskaya, A.B. and Selcuk, O. and Talman, A.J.J. (2012) The average covering tree value for directed graph games. Memorandum 1981, Department of Applied Mathematics, University of Twente, Enschede. ISSN 1874-4850

Full text available as:


215 Kb
Open Access

Official URL:

Exported to Metis


We introduce a single-valued solution concept, the so-called average covering tree value, for the class of transferable utility games with limited communication structure represented by a directed graph. The solution is the average of the marginal contribution vectors corresponding to all covering trees of the directed graph. The covering trees of a directed graph are those (rooted) trees on the set of players that preserve the dominance relations between the players prescribed by the directed graph. The average covering tree value is component efficient and under a particular convexity-type condition is stable. For transferable utility games with complete communication structure the average covering tree value equals to the Shapley value of the game. If the graph is the directed analog of an undirected graph the average covering tree value coincides with the gravity center solution.

Item Type:Internal Report (Memorandum)
Research Group:EWI-DMMP: Discrete Mathematics and Mathematical Programming
Uncontrolled Keywords:TU game, Directed communication structure, Marginal contribution vector, Myerson value, Average tree solution, Stability
ID Code:21864
Deposited On:23 May 2012
More Information:statisticsmetis

Export this item as:

To correct this item please ask your editor

Repository Staff Only: edit this item