Low-temperature liquid-phase epitaxy of rare-earth-ion doped KY(WO$_4$)$_2$ thin layers

Y.E. Romanyuk1, I. Utke1, D. Ehrentraut1*, M. Pollnau1, S. Garcia-Revilla2, R. Valiente2, and N.V. Kuleshov3

1Advanced Photonics Laboratory, Institute of Applied Optics, Swiss Federal Institute of Technology, Lausanne, Switzerland.
2Dpto. Física Aplicada, Facultad de Ciencias, Universidad de Cantabria, Santander, Spain.
3International Laser Center, Belarus State Polytechnical Academy, Minsk, Belarus.
*Present address: Fukuda Laboratory, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan.

Rare-earth-ion doped KY(WO$_4$)$_2$ (hereafter KYW) is a promising material for novel solid-state lasers [1]. Low laser threshold, high efficiency, high output powers, and third-order nonlinear effects have stimulated research towards miniaturized thin-film waveguide lasers and amplifiers for future photonic devices. Active films can be fabricated by liquid-phase epitaxy (LPE), pulsed laser deposition, ion implantation, and diffusion bonding [2,3].

We report here on the low-temperature liquid-phase epitaxy of KYW:RE$^{3+}$ single crystalline layers (RE = Tb, Dy, Yb). Undoped KYW crystals grown by a modified Czochralski method with laser-grade polished (010) faces were used as substrates. The ternary chloride eutectic NaCl-KCl-CsCl with a melting temperature of 482°C was employed as a solvent. This flux dissolves all the solute components, possesses low viscosity and volatility, is non-toxic and available in high purities. The layers were grown at start temperatures as low as 540°C, which is favorable in order to decrease the thermal stress due to the differences in thermal expansion coefficients of substrate and layer [4]. However, at high RE-dopant concentrations elastic stress due to the lattice parameter misfit between substrate and layer is often released by formation of a crack network along certain cleavage planes.

Typically, the growth started with the nucleation of 3D islands, which then coalesced into a uniform epitaxial layer with areas of up to 1 cm2. X-ray diffraction measurements confirmed that the epilayers were strictly oriented in [010] direction. Elemental composition, nano-hardness, and elastic constants of the layers were determined. RE-ion incorporation into the KYW host decreases in the series Dy$^{3+}$$>Yb^{3+}$$=Tb^{3+}$ according to the increasing misfit between the ion radii of RE and replaced Y$^{3+}$ ion. The influence of solute concentration, growth temperature, and doping level was investigated in order to produce layers up to 20-µm thick and with low defect concentration, which can be suitable as optically activated waveguides.