Investigation of diode-pumped 2.8-μm laser performance in Er:BaY2F8

M. Pollnau, W. Lüthy, and H. P. Weber
Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

T. Jensen and G. Huber
Institute of Laser Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg, Germany

A. Cassanho
Lightning Optical Corporation, 431 East Spruce Street, Tarpon Springs, Florida 34689

H. P. Jenssen
Center for Research and Education in Optics and Lasers, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826-3271

R. A. McFarlane
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, California 90265

Received August 17, 1995

Laser operation at 2.8 μm in BaY2F8 with erbium concentrations of 7.5% and 20% is investigated under laser-diode pumping at 967 nm. Output powers as high as 250 mW and slope efficiencies as high as 24% are obtained. Results are comparable with those of Er3+:LiYF4 under the same pump conditions. Slope efficiencies above 30% are predicted for optimized erbium concentrations.

PACS numbers: 42.55.Rz, 42.60.Lh, 78.45.+h.

© 1996 Optical Society of America

The investigation of erbium-doped lasers at 3 μm is stimulated by applications in medicine, especially in surgery. Fiber lasers are promising candidates in this field if single-mode operation at moderate output powers in the range of 100 mW is required. Efficient diode pumping, however, can be more easily realized with crystal hosts. Continuous-wave output powers as high as 500 mW in Er3+:YSGG (Ref. 2) and above 1 W in Er3+:LiYF4 (Ref. 3) have been reported.

The upper laser level of the erbium 3-μm transition has a shorter lifetime than the lower laser level. The interionic upconversion process that depletes the lower laser level and feeds the upper laser level is a significant process in the establishment of cw inversion. This has been demonstrated by cw laser emission for pumping of the lower laser level. Slope efficiencies of 36% in GSGG (Ref. 7) and 40% in LiYF4 (Ref. 8) exceeding the Stokes limit have been obtained as a result of energy recycling through the upconversion mechanism. A second upconversion depletes the upper laser level, which is detrimental to lasing. The concentration dependence of both upconversion processes has been measured in Er3+:YSGG (Ref. 9) and Er3+:BaY2F8. The increase of the lower-state upconversion and its saturation above a 30% erbium concentration as well as the increase of the upper-state upconversion above a 30% erbium concentration suggest an optimum dopant concentration near 30%. Concentration-dependent laser experiments determined this concept for YSGG, but in LiYF4 the optimum concentration was found to be considerably lower.

BaY2F8 is a promising candidate for efficient 2.8-μm laser performance. Owing to a small phonon energy of 415 cm⁻¹ the ratio of upper-state to lower-state lifetime is very favorable. Diode-pumped laser performance has been demonstrated with slope efficiencies as high as 19% and an output power of approximately 100 mW. However, the erbium concentration has not yet been optimized for maximum slope efficiency, which, in view of the results cited above, is important for efficient laser operation.

In this Letter the 2.8-μm laser performance of Er3+:BaY2F8 with dopant concentrations of 7.5% and 20% is investigated. Our convention for the erbium concentration is atomic percent at the yttrium site. The 7.5% sample was grown at Hughes Research Laboratories, and the 20% sample was grown at the Massachusetts Institute of Technology. The crystal end faces are flat polished, but the reflection of He–Ne laser light indicates that the surfaces are not parallel to each other. The samples are uncoated, because difficulties have occurred in the past with industrial antireflection coatings at 2.8 μm.

The experimental arrangement reported in Ref. 11 is shown in Fig. 1 and is applied to the laser experiments with BaY2F8. Two IBM laser diodes specified at powers of 1 W, each with an emission zone of 1 μm × 50 μm and operating at 967 nm, are collimated and polarization combined. They provide a cw
power of 1.3 W incident upon the crystal. The pump beam spot at the front surface of the crystal is approximately a cross with two bars of 90 µm × 20 µm. The sample is mounted on a water-cooled copper block. The nearly hemiconcentric resonator consists of a planar input mirror and an output mirror with a radius of 50 mm. Mirror reflectivities at 2.8 µm are measured to be 99.8% on each side. The resulting transmission of 0.4% led to higher slope efficiencies than did 1.2% transmission.3 No degradation of the mirror coatings has occurred during several months of operation. The resonator length is adjusted for the highest output power.

The 7.5% sample is oriented and polished for transmission along the x axis of the index ellipsoid (using the convention of Dinndorf et al.13), whereas the 20% sample is oriented along the y axis. The ground-state-absorption cross sections of the 7.5% and 20% samples at the pump wavelength are 1.3 × 10⁻²¹ and 6.4 × 10⁻²² cm², respectively, resulting in comparable absorption coefficients of 1.3 and 1.7 cm⁻¹ at laser threshold. The absorption coefficients increase with rising pump power because of a temperature shift of the diode pump wavelength with rising pump power toward the absorption peak at 967 nm. Excited-state absorption from the upper laser level14 that is due to increased excitation at 967 nm. Excited-state absorption from the upper laser level14 that is due to increased excitation at 967 nm. Since the emission cross section is a factor of 1.2 higher for E parallel to the x axis,15 the threshold is smaller for the 20% sample. The output power approaches 250 mW and is limited by the pump power available from the two laser diodes. We obtain a slight enhancement of the efficiency by providing a nitrogen flow into the partly closed resonator, thus reducing the reabsorption losses owing to water vapor in the cavity.

In Fig. 3 the Er³⁺:BaY₂F₈ results of the present experiments are compared with results of Er³⁺:LiYF₄ with several dopant concentrations under the same pump and resonator conditions and with the same resonator mirrors. Losses are small in all materials, and the overlap between pump and laser modes is similar. The spectroscopic data of lifetimes and upconversion parameters are comparable in Er³⁺:LiYF₄ (Ref. 9) and Er³⁺:BaY₂F₈.10 In addition, 1% erbium on the yttrium site corresponds to erbium concentrations of 1.32 × 10⁴⁰ cm⁻³ in BaY₂F₈ and 1.38 × 10⁴⁰ cm⁻³ in LiYF₄, which are also comparable. Therefore similar laser performance is expected for identical erbium concentrations in both host materials. The slope efficiency versus absorbed pump power in LiYF₄ increases with increasing dopant concentration but drops significantly above 15% erbium concentrations.9 The data for BaY₂F₈ fit well into this scenario, with possibly a slight shift toward smaller concentration. Thus we dare the prediction that an optimum erbium concentration may be in the range of 12–15% with slope efficiencies exceeding 30%.

Despite the similar lasing properties at comparable dopant concentrations, LiYF₄ has two advantages over BaY₂F₈. First, it is lasing on a slightly different wavelength with smaller reabsorption losses owing to water vapor. This ensures efficient performance without the need to keep the resonator dry. Second, in one of the BaY₂F₈ samples thermal problems, e.g., a smaller slope efficiency without sample cooling, already occurred at 1.3 W absorbed pump power, whereas in LiYF₄ thermal problems are present only above 6 W absorbed pump power9 but in a hardly comparable setup with less tight focusing of the pump beam.

Table 1. Parameters of the Investigated BaY₂F₈ Crystals Under Diode Pumping at 967 nm

<table>
<thead>
<tr>
<th>Er³⁺ Concentration (%)</th>
<th>Length (nm)</th>
<th>α (cm⁻¹)</th>
<th>Threshold (mW)</th>
<th>Polarization</th>
<th>Slope Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>4.8</td>
<td>1.3</td>
<td>33</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.1</td>
<td>1.7</td>
<td>25</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

The erbium concentration is given in atomic percent at the yttrium site. The absorption coefficient α is given for the 967-nm pump wavelength at laser threshold but increases with rising pump power.
The complicated population dynamics of the erbium 3-μm crystal laser has been extensively investigated. The concentration dependence of the slope efficiency, however, is still in question. All crystals investigated so far exhibit a maximum slope efficiency at a certain erbium concentration. This concentration is approximately 50% for flash-lamp-pumped YAG, 30% for other diode-pumped garnets, \(2,11\) and 15% for diode-pumped fluorides. Using the rate-equation system of Ref. 16, the measured or estimated concentration dependence of the interionic processes in Er\(^{3+}:\text{LiYF}_4\) (Ref. 9) and Er\(^{3+}:\text{BaY}_2\text{F}_8\), \(^1,10\) and including the inverse interionic processes with parameters \(^3\) different from those of the normal processes, we calculate an optimum output power for a 20% erbium concentration. This value is in reasonable agreement with the experimental result \(^3\) of 15% for Er\(^{3+}:\text{LiYF}_4\). The decrease in slope efficiency toward lower or higher dopant concentration, however, is much less pronounced in the simulation than in the experiment. This indicates that either further two-ion or even three-ion processes, which have not yet been included in the model, may contribute to the population dynamics in erbium or that the parameters of the relevant interionic processes have to be remeasured.

In conclusion, laser operation at 2.8 μm in BaY\(_2\)F\(_8\) with erbium concentrations of 7.5% and 20% has been investigated under laser-diode pumping at 967 nm. With two polarization-coupled laser diodes, output powers as high as 250 mW and slope efficiencies as high as 24% are obtained, although a considerable fraction of the pump light is lost owing to the noncircular shape of the pump beam and the resulting nonoptimal overlap between the pump and the laser beams. Results are comparable with those of investigations of Er\(^{3+}:\text{LiYF}_4\) under the same pump and resonator conditions. The highest slope efficiency, which may exceed 30%, is predicted for an erbium concentration of approximately 12–15%. Thermal problems may occur at a lower pump power than in LiYF\(_4\).

The authors acknowledge support by the Swiss Priority Program “Optique” and by the German BMFT (minister for education, science, research, and technology) within the Medical Diode-Pumped Laser Project. The work of R. A. McFarlane was supported in part by the U.S. Air Force Office of Scientific Research under contract F49620-94-C-0018.

References