Distributed Algorithms for SCC Decomposition*

Jiří Barnat¹, Jakub Chaloupka¹, and Jaco van de Pol²

¹ Masaryk University Brno, Czech Republic
² University of Twente, Formal Methods and Tools
Department of EEMCS, The Netherlands

Abstract. We study existing parallel algorithms for the decomposition of a partitioned graph into its strongly connected components. In particular, we identify several individual procedures that the algorithms are assembled from and show how to assemble a new and more efficient algorithm, called Recursive OBF, to solve the decomposition problem. We also report on a thorough experimental study to evaluate the new algorithm. It shows that it is possible to perform SCC decomposition in parallel efficiently and that Recursive OBF, if properly implemented, is the best choice in most cases.

1 Introduction

The problem of finding strongly connected components (SCCs), known also as SCC decomposition, is one of the basic graph problems that finds its applications in many research fields, even beyond the scope of computer science. An efficient algorithmic solution to this problem is due to Tarjan [25], who showed that, given a graph with n vertices and m edges, it is possible to identify and list all strongly connected components of the graph in $O(n + m)$ time and $O(n)$ space.

* This work has been partially supported by the Czech Science Foundation grant No. 201/06/1338, by the Academy of Sciences grant No. 1ET408050503 and by the EU FP6 NEST pathfinder project EC-MOAN (043235).
Among many applications, the algorithm may be used also for the analysis of computer systems. In particular, algorithms for SCC decomposition find their application in distributed formal verification tools such as CADP [18], DiVinE [2], DUPPAAL [5], LiQuor [12], µCRL [6], etc. Namely, they allow the tools to verify quantitative properties of probabilistic systems, compute \(\tau \)-confluence [8], form a preprocessing step for branching bisimulation reduction, or verify systems with fairness constraints or properties given by extensions of Büchi automata.

Unfortunately, graphs modelling complex computer systems tend to be very large, which makes it hard to handle them on a single machine. One way to tackle this problem is to distribute the graph across a cluster of workstations and employ a distributed algorithm to decompose the partitioned graph. However, Tarjan’s algorithm (and all other linear algorithms for SCC decomposition, e.g., Kosaraju’s algorithm also known as Double DFS [15]) strongly rely on the depth-first search post-ordering of vertices, whose computation is known to be \(P \)-complete [23], and thus, difficult to be computed in parallel. Therefore, different approaches have been used to design parallel algorithms for solving the problem.

A parallel algorithm based on matrix multiplication was described in [19] and further improved in [14,1]. The algorithm works in \(O(\log^2 n) \) time in the worst case. However, to achieve this low time complexity it requires \(O(n^{2.376}) \) parallel processors. As typical graphs that we are interested in contain millions of vertices the algorithm is practically unusable and is only interesting from a theoretical point of view. Another parallel algorithm for finding SCCs was given in [17]. It exploits the fact that it is possible to efficiently compute the set of vertices reachable from a certain vertex or set of vertices in parallel. The general idea of the algorithm is to repeatedly pick a vertex of the graph and identify the component to which it belongs, by using a forward and a backward parallel reachability procedure. The algorithm proved to be efficient enough in practice, which resulted in several theoretical improvements of it [22, 20]. The worst time
complexity of the algorithm is \(O(n \cdot (n + m)) \). Nevertheless, the algorithm exhibits \(O(m \cdot \log n) \) expected time \([17]\). Another algorithm was introduced in \([22]\). That algorithm is more involved, but still, its basic building block is a simple parallel value iteration technique.

In this paper, which can be viewed as a full version of \([4,3]\), we summarise a number of known procedures used for distributed SCC decomposition. Moreover, we present a new algorithm based on rearranging these procedures, and extensively compare its implementation with existing algorithms. The rest of the paper is organised as follows. We recapitulate basic terms and definitions in Section 2, describe known techniques and algorithms for solving SCC decomposition in Section 3. The new algorithm based on recursive application of OBF \([4,3]\) is described in Section 4. Compared to \([3]\) we added full proofs for the correctness and the complexity claims. Results of experiments are in Section 5. In particular, we compare our new algorithm with the algorithms from \([22,17]\), and we measure the effect of decomposing sub-graphs one by one, or in parallel. Contributions of the paper are summarised and future work is outlined in Section 6.

Acknowledgement. We like to thank Simona Orzan for discussions on the CH-algorithm and sharing her implementation. We are grateful to the Centrum voor Wiskunde en Informatica (Amsterdam) for hosting a considerable part of the research reported here.

2 Preliminaries

2.1 Directed Graphs

A (directed) graph \(G \) is a pair \((V, E)\), where \(V \) is a set of vertices, and \(E \subseteq V \times V \) is a set of (directed) edges. If \((u, v) \in E \), then \(v \) is called (immediate) successor of \(u \) and \(u \) is called (immediate) predecessor of \(v \). The indegree of a vertex \(v \) is
the number of immediate predecessors of \(v \). \(G^T = (V, E^T) \), the \textit{transposed graph} of \(G = (V, E) \), is the graph \(G \) with all edges reversed, i.e., \(E^T = \{(u, v) \mid (v, u) \in E\} \).

Let \(G = (V, E) \) be a directed graph. Let \(E^r \) be a transitive and reflexive closure of \(E \) and \(s, t \in V \) two vertices. We say that vertex \(t \) is \textit{reachable} from vertex \(s \) if \((s, t) \in E^r\). If \(s_k \) is reachable from \(s_0 \), then there is a sequence of vertices \(s_0, \ldots, s_k \), s.t. \((s_i, s_{i+1}) \in E \) for all \(0 \leq i < k \). We call this sequence a \textit{path}. A path is \textit{simple} if it contains no duplicated vertices. The \textit{length} of the path is \(k \), i.e. the number of edges. A graph is \textit{rooted} if there is an initial vertex \(s_0 \in V \) such that all vertices in \(V \) are reachable from \(s_0 \). Given a graph \(G \), we use \(n, m \) and \(l \), to denote the number of vertices and edges, and the length of the longest simple path between any two vertices in \(G \), respectively.

A set of vertices \(C \subseteq V \) is \textit{strongly connected}, if for any vertices \(u, v \in C \), we have that \(v \) is reachable from \(u \). A \textit{strongly connected component} (SCC) is a \textit{maximal} strongly connected \(C \subseteq V \), i.e. such that no \(C' \) with \(C \subsetneq C' \subseteq V \) is strongly connected. A maximal strongly connected component \(C \) is \textit{trivial} if \(C \) is made of a single vertex \(c \) and \((c, c) \notin E \), and is \textit{non-trivial} otherwise.

Let \(W_G \) be the set of all strongly connected components of graph \(G = (V, E) \). The \textit{quotient graph} of graph \(G \) is a directed graph \(SCC(G) = (W_G, H_G) \), where \(H_G = \{(w_1, w_2) \mid \exists u_1, u_2 \in V \exists u_1 \in w_1 \wedge u_2 \in w_2 \wedge (u_1, u_2) \in E\} \), i.e., there is an edge between SCCs if and only if there is an edge between some members of the SCCs in the original graph. Note that the quotient graph of any directed graph is acyclic. Given a graph \(G \), we denote by \(N, M \) and \(L \), the number of vertices and edges, and the length of the longest (simple) path in the quotient graph of \(G \), respectively. A strongly connected component is \textit{leading} if it has no predecessors in the quotient graph. A set \(S \subseteq V \) is \textit{SCC-closed} if each SCC in the graph is either completely inside the set or completely outside the set; such \(S \) is also referred to as an \textit{independent sub-graph}.

4
For \(v \in W \subseteq V \), the forward closure of \(v \) in \(W \) is the set of reachable states from \(v \) in the graph \((V, E_W)\), where \(E_W = \{(x,y) \mid (x,y) \in E \land x,y \in W\} \). If \(W \) is not specified, the whole graph is meant. The forward closure of \(S \subseteq W \) in \(W \) is the union of forward closures of all vertices from \(S \) in \(W \). Finally, the backward closure of \(v \) (or \(S \)) in \(W \) is the forward closure of \(v \) (or \(S \)) in \(W \) in the graph \(G^T \).

2.2 Graph Representation

A directed graph can be given in many ways. We restrict ourselves to explicit vertex representations, excluding symbolic representations, e.g., based on binary decision diagrams.

Beside the standard representations by adjacency lists or an adjacency matrix we also mention graphs that are given *implicitly* (do not confuse with symbolic representation, this is still an explicit vertex representation). A rooted graph is given implicitly if it is defined by its initial vertex and a function returning immediate successors of an arbitrary vertex. Within the context of implicitly given graphs there are some restrictions that algorithms have to follow. If an algorithm requires any piece of information that cannot be concluded from the implicit definition of the graph, it has to compute the information first. For example, there is no way to directly identify immediate predecessors of a given vertex from the implicit definition of the graph. If the algorithm needs to enumerate immediate predecessors, then the predecessors must be stored, while enumerating the whole graph first. Similarly, in order to number the vertices of an implicitly given graph, one must enumerate all its vertices first. For numbering the vertices of implicitly given graphs, a parallel procedure was introduced in [18]. Note that all vertices of an implicitly given graph are reachable from the initial vertex by definition.
The reason for dealing with implicitly given graphs comes from practice. In many cases, the description of rules according to which the graph can be generated is more space efficient than the enumeration of all vertices and edges. The difference might be quite significant. For example, in the context of model checking [13], the implicit definition of the graph is up to exponentially more succinct compared to the explicit one. This is commonly referred to as the state explosion problem [13]. However, it turns out that, in the situation where the graph has to be traversed more than once, which is the case for all parallel SCC decomposition algorithms, it is advantageous to first generate the whole graph and store it in an explicit form. All subsequent computations are then performed using the explicit representation. We save the time for repeated generation of successors and since the graphs we are interested in are mainly sparse, the needed memory is proportional to the number of vertices only.

3 Known Algorithms

Before describing individual parallel algorithms, we describe the basic techniques that the later algorithms will use. This allows us to describe the algorithms and analyse their behaviour in a more compact and clearer way.

All parallel algorithms presented in this paper build on the same basic principle. The graph to be decomposed is divided into independent (SCC-closed) subgraphs. These are further divided into smaller independent subgraphs until they become SCCs. All the algorithms take advantage of the fact that computation on separate independent subgraphs can be done in parallel.

3.1 Reachability relation

Computation of the reachability relation is the core procedure used in all the algorithms. The task of the procedure is to identify all vertices that are reachable
from a given vertex, i.e. to compute its forward closure. The standard breadth-first or depth-first traversals of the graph can be employed to do so using \(O(n) \) space and \(O(n + m) \) time.

The reachability procedure is the first place where parallelism comes into play in the algorithms. The parallelisation of a reachability procedure has by now become a standard technique \([10, 11, 24, 21]\). A so called \textit{partition function} is used to assign vertices to processors. Each processor is responsible for the exploration of the vertices assigned to it by the partition function. Each processor maintains its own set of already visited vertices and its own list of vertices to be explored. If a vertex has been visited previously (it is in the set of visited vertices), then its re-exploration is omitted. Otherwise, its immediate successors are generated and distributed into lists of vertices, to be explored according to the partition function.

The algorithms described in the next section use the notion of \textit{backward reachability}, in addition to the notion of \textit{forward reachability}. The task of a backward reachability procedure is to identify all vertices that a given vertex can be reached from. The procedure for backward reachability mimics the behaviour of the procedure for the forward reachability except it uses immediate predecessors instead of immediate successors during graph traversal.

Note that in many cases, the forward and backward reachability procedure are restricted to a particular independent subgraph of the original graph. This can be achieved by an additional marking of that subgraph, or simply by deleting edges that leave that subgraph.

3.2 Pivot selection

In several algorithms, there is a point at which a certain vertex (called pivot) must be selected from the current independent subgraph to start the decomposition of that subgraph. Pivot selection plays a significant role in the complexity
of the algorithms. Imagine we always pick a pivot belonging to a component that has no descendant components in the component graph of the subgraph being decomposed. Due to the acyclicity of the component graph such a component always exists. Having such a pivot all vertices belonging to the corresponding component can be identified using only a single forward reachability initiated at the pivot. Decomposing the graph to SCCs in this manner results in a linear time procedure. Unfortunately, to pick pivots so that the condition above is satisfied means to pick pivots in the depth-first search post-ordering, which is, as stated in the introduction, difficult to be done in parallel. Since the optimal pivot selection is difficult, pivots are typically selected randomly.

3.3 Trivial strongly connected components

This subsection presents an efficient technique for the elimination of leading and terminal trivial components from any independent subgraph. Use of this technique can significantly speed up all the SCC decomposition algorithms, since they are not that efficient on detecting trivial components.

Every vertex that has zero predecessors must be a trivial component and as such it can be immediately removed (along with all incident edges) from the graph. Removing such a vertex may, however, produce new vertices without pre-
decessors that can be removed in the same way. We refer to this recursive elimination technique as One-Way-Catch-Them-Young elimination (OWCTY) [16]. The technique can be applied in an analogous way to vertices without successors (Reversed OWCTY) as well. An improved version of the basic parallel algorithm that performs OWCTY elimination before selection of the pivot was described in [20]. We stress that only leading and terminal trivial components may be identified in this way. Trivial components in between non-trivial SCCs will not be identified. These components, however, may become leading or terminal when the graph is further divided. The graph depicted in Figure 1 contains all three types of trivial components: leading trivial components (LT), terminal trivial components (TT), and trivial components that are neither leading nor terminal (T).

Having described the basic techniques, we can now present individual algorithms. All pseudocodes listed below describe the core parts of the algorithms. We neither list the initial reachability procedure that must be performed in order to compute the explicit representation from the implicit one, nor the many technical details related to implementation, parallelisation, distribution, etc.

3.4 FB

The FB algorithm [17] is the basic algorithm, outlined in Section 1. We illustrate the basic principle of this algorithm. Figure 1 shows the basic step of the algorithm. First, a vertex (called pivot) is selected at random from an independent subgraph (the whole graph in this situation) that is not known to be a single SCC yet. Second, the forward and the backward closure of the pivot are computed; these are depicted by shaded regions. This procedure divides the graph into four independent subgraphs. The vertices that are both in the forward and the backward closure form the SCC of pivot and need not be further processed. The other three subgraphs are: vertices in the forward closure but not in the
backward closure, vertices in the backward closure but not in the forward closure, and vertices that are neither in the forward nor in the backward closure. These three subgraphs have to be further decomposed. They can be decomposed independently and hence in parallel. Recursive application of the basic step is used to do it.

The pseudocode of the algorithm is in Figure 2. A pivot is selected using procedure PIVOT and its forward and backward closures are computed using parallel reachability procedures FWD and BWD. Both reachability procedures have two parameters. Besides the vertex or vertices to start from, each reachability procedure is also given a set of vertices that its exploration is limited to. This ensures that given a subgraph, the procedure will explore only immediate successors or predecessor of vertices within the subgraph. The sets of vertices as computed by forward and backward reachability procedures are referred to as F and B, respectively. Having computed both sets F and B, a new component is identified as the intersection of F and B, and recursive calls for three new subgraphs are made. As stated in Section 1, the time complexity of the algorithm is $O(n \cdot (n + m))$.

```
1 proc FB(V)
2    if (V ≠ ∅)
3        p := PIVOT(V)
4        F := FWD(p, V)
5        B := BWD(p, V)
6        F ∩ B is SCC
7    in parallel do
8        FB(F \ B)
9        FB(B \ F)
10       FB(V \ (F ∪ B))
11    od
12 fi
13 end
```

Fig. 2. FB Algorithm
3.5 Colouring/Heads-off (CH)

The colouring algorithm was introduced in [22]. It uses a totally ordered set of colours. Initially, each vertex has its own colour. The colours are repeatedly propagated to successors with a smaller colour, until all edges are non-decreasing. A forward reachability procedure augmented to propagate maximal visited colours can be used for this task. Note that a vertex can be re-coloured several times, which results in time complexity of $O(n \cdot m)$ [9]. The final colour of a vertex is the colour of its maximal predecessor, i.e., predecessor with maximal colour. Here a predecessor doesn’t necessarily mean an immediate predecessor (as in the rest of this paper), but here it means any vertex in the backward closure. After colouring, all vertices in a single SCC have the same colour. This is because all vertices in a single strongly connected component share the same set of predecessors. So all edges between vertices of different colours can be removed. This technique is able to divide the graph into more than four parts, as opposed to the technique presented in Subsection 3.4. Unfortunately, we don’t know how to do this in linear time. A graph division obtained after colouring is depicted in Figure 3.

In the second step, one takes as roots those vertices that kept their initial colour. The SCC of each root consists of those vertices that are backward reachable (within the same colour) from it. These SCCs are removed (heads-off) and the algorithm proceeds with the remaining sub-graph and with the original colour assignment.
The pseudocode of the algorithm is in Figure 4. Computation of maximal predecessors is done by the procedure FWD-MAXPRED, which returns the list of roots as PredList. It also computes for each $k \in \text{PredList}$ the set V_k of vertices with maximal predecessor k. The SCCs of the roots are identified by the standard procedure BWD, which performs backward reachability. The removal of these SCCs on line 8 was referred to as heads-off in the previous paragraph. Edges are not removed there. Instead, separate recursive calls of the main procedure restricted to the appropriate subgraphs are used.

The time complexity of the algorithm is $O((L + 1) \cdot n \cdot m)$, where $O(n \cdot m)$ comes from the complexity of the FWD-MAXPRED procedure. The total complexity follows from the fact that every time a recursive call is invoked, it is on a graph with strictly shorter longest path in the quotient graph.

```
1 proc CH(V)
2   if (V ≠ ∅)
3     then PredList := FWD-MAXPRED(V)
4       foreach k ∈ PredList do
5         in parallel do
6           B_k := BWD(k, V_k)
7           B_k is SCC
8           CH(V_k \ B_k)
9       od
10   od
11 end
```

![Fig. 4. CH Algorithm](image)

3.6 OBF

This algorithm is based on a recent technique OWCTY-BWD-FWD (OBF) [4, 3] which gave name to the whole algorithm. It identifies a number of independent subgraphs (called OBF slices) in $O(n + m)$ time. The slices are then decomposed using the FB algorithm. This algorithm assumes the input graph to be rooted, i.e., we have an initial vertex from which all other vertices are reachable.
The OBF technique repeatedly employs OWCTY elimination, succeeded with backward and forward reachability. Each iteration identifies one OBF slice. The pseudocode of the algorithm is in Figure 6. A graph and two steps of the technique performed on the graph are depicted in Figure 5. We simultaneously describe the figure and the pseudocode. We start with the initial vertex (the vertex with no predecessors in the figure, the vertex \(v \) in the pseudocode). The OWCTY elimination procedure (line 5 in pseudocode) eliminates all leading trivial components (the set \(\text{Eliminated} \) in the pseudocode) and visits some vertices of all components immediately reachable from the eliminated trivial ones. Visited but not eliminated vertices are shown as vertices with a little cross (the set \(\text{Reached} \)). A backward reachability (BWD()) performed from vertices with the little cross identifies the first OBF slice (the set \(B \)). Note that the slice contains exactly all strongly connected components immediately reachable from the eliminated trivial components. The decomposition of the slice is initiated as an independent parallel procedure (line 10). Then a forward reachability procedure that stops
on immediate successors of vertices in the slice is executed (FWD-SEEDS()).
These successors (vertices with the little circle in the figure, Seeds on line 12 in
the pseudocode) are used to start the next iteration of OBF. The time complexity
of the algorithm is $O(n \cdot (n + m))$, the same as for the FB algorithm.

```
1 proc OBF(V, v)
2   Seeds := {v}
3   [v is initial vertex]
4   while V ≠ ∅ do
5       Eliminated, Reached := OWCTY(Seeds, V)
6       V := V \ Eliminated
7       [All elements of Eliminated are trivial SCCs]
8       B := BWD(Reached, V)
9       in parallel do
10          FB(B)
11       od
12   Seeds := FWD-SEEDS(B, V)
13   V := V \ B
14 od
15 end
```

Fig. 6. OBF Algorithm

4 Recursive OBF

As shown in [4], OBF performs better than FB in a number of experiments. Note
that in OBF the graph is split into slices in linear time. On each slice, algorithm
FB is applied. But, as OBF is better than FB, we now propose to *recursively*
apply OBF to the slices.

However, the slice may not be rooted, so we must:

- Repeatedly pick a vertex from the slice and compute its forward closure
 within the slice; we call this a “rooted chunk”. Subsequently run OBF on
 each rooted chunk within the slice;

- Add a termination criterion in case the whole slice is one SCC

Adding a termination criterion is easy. No special work has to be done. We
simply count the vertices visited during the first backward search in the first
rooted chunk (The “B” part of OBF). If the slice consists of exactly one SCC there will be only one rooted chunk in it; O will not eliminate any vertex, and so B will be started from the root and explores the whole slice. Conversely, if B starting from the root of the first chunk explores the whole slice, the slice is one SCC, for it is both the forward and the backward closure of the root. We now describe recursive OBF in more detail.

The pseudocode of Recursive OBF is in Figure 7. The suffix “-P” in the name of the procedure means that it runs in parallel on independent subgraphs. The term OBFR without any suffixes is used to refer to Recursive OBF as such, without specifying the degree of parallelism (see Subsection 4.1).

We start with the whole graph. Vertices in recognised SCCs are removed from the “working” set V until we end up with an empty set at which point all SCCs have been identified.

Initially we assume that we don’t have a vertex from which all other vertices are reachable (initial vertex). To start OBF we need such a vertex, so we pick one vertex (line 3) and compute its forward closure Range in V using procedure FWD() (line 4). OBF is then applied on Range. Vertices from $V \setminus Range$ will be processed in the next iterations of the main while-loop (lines 2–24).

Before OBF is started on Range, Range is saved into OriginalRange, this will enable us to determine if a slice found by OBF is an SCC. Of course, in the actual implementation we only store the size of OriginalRange. On line 9 there is an invariant “(The forward closure of Seeds in Range) = Range”. In the first iteration of the while-loop on lines 8–23 the invariant holds trivially, because Seeds contains just one vertex and Range was computed as a forward closure of that vertex. Procedure OWCTY() eliminates leading trivial components by repeatedly removing indegree 0 vertices reachable from Seeds. Eliminated vertices are returned as the set Eliminated, and subsequently removed from Range. Vertices at which OWCTY() stops (they have positive indegree) are returned as the
set $Reached$. The forward closure of $Reached$ in $Range$ equals $Range$, since any path that leads from $Seeds$ to a non-eliminated vertex has to contain some vertex from $Reached$. All elements from $Eliminated$ are trivial SCCs. Now a backward search is started from vertices in $Reached$. This search is implemented by procedure BWD(). Backward closure of $Reached$ in $Range$ is returned as the set B. This is the first SCC-closed slice found by OBF. If the set B equals the set $OriginalRange$, it means that all vertices in the SCC-closed set $OriginalRange$ are reachable from the same single vertex (Note that $B = OriginalRange$ is only possible in the first iteration of the while-loop 8–23) and so B is indeed an SCC. Consequently, $Range \setminus B$ is the empty set and the while-loop finishes.
If $B \neq \text{OriginalRange}$ we run OBFR-$P()$ on B recursively. Moreover, note that the nested procedure can be run in parallel, which increases parallelism. Seeds for the next iteration of the while-loop 8–23 are computed by the procedure FWD-SEEDS, which simply returns all vertices from Range that are immediate successors of vertices in B but not in B. Since all paths that reach vertices in Range \ B from B must contain some vertex from Seeds, after we subtract B from Range, the invariant of line 9 is satisfied. When Range = \emptyset, the while-loop 8–23 finishes and we handle the remaining vertices in V.

We now formally prove the correctness of the algorithm. The key point is the invariant on line 9. It ensures that the whole graph is eventually processed. As argued earlier, it trivially holds in the first iteration of the while loop on lines 8–23. Thus, it remains to show that, if the invariant holds in iteration i, then it holds also in iteration $i + 1$. Together with the fact than Range gets smaller in every iteration, it implies that the whole rooted chunk computed on line 4 is processed on lines 8–23. Another important point is that the set B computed on line 13 is an independent (SCC-closed) subgraph. This implies partial correctness. Since line 18 is executed only if B is smaller than OriginalRange, finite depth of recursion and thus termination of the algorithm is ensured. All the statements in this paragraph are proved below.

We sometimes use a set of vertices to refer to the graph induced by that set. To prove the invariant, we need to strengthen it a bit. In addition to the fact that the forward closure of Seeds in Range is equal to Range, we argue that Range is an independent subgraph of OriginalRange. Since initially Range = OriginalRange, the strengthened invariant holds in the first iteration of the while loop.

The following lemmata analyse one iteration of the while loop on lines 8–23. In the whole iteration Range is used to refer to the set Range on line 9, i.e., at the very beginning of the iteration. The same goes for Seeds. The set Range
computed on line 11 is referred to as Range'. The set Range computed on line 22 is referred to as Range''. The set Seeds computed on line 20 is referred to as Seeds'.

Lemma 1. Vertices eliminated by OWCTY() (the set Eliminated on line 10) are trivial SCCs of OriginalRange.

Proof. Let’s suppose, for the sake of contradiction, that OWCTY() eliminates a vertex v such that there is a vertex v' such that there is a path in OriginalRange from v to v' and vice versa. Range is an independent subgraph of OriginalRange. It follows, that Range contains a cycle $c = (v_0, v_1, \ldots, v_k)$ with $v_0 = v_k = v$. At the moment when v was eliminated it must have had indegree 0, which means that vertex v_{k-1} must have been eliminated earlier, since there is an edge from v_{k-1} to v. By repeating this argument, we get that all vertices $v_{k-2}, v_{k-3}, \ldots, v_0$ were eliminated before v and since $v_0 = v$, it means that v was eliminated before v. An obvious contradiction. □

Lemma 2. Let Reached be the set of vertices at which OWCTY() stops (cf. line 10; these are the non-eliminated vertices from Seeds and the non-eliminated successors of the eliminated vertices). Then the forward closure of Reached in Range' is equal to Range'.

Proof. Since the forward closure of Seeds in Range is equal to Range, for each $v \in \text{Range}'$ there is $w \in \text{Seeds}$ such that there is a path $p = (v_0, v_1, \ldots, v_k)$, where $v_0 = w$, $v_k = v$, and $k \geq 0$. Since OWCTY() eliminates only indegree 0 vertices, there is $j \geq 0$ such that vertices v_0, \ldots, v_{j-1} were eliminated and vertices v_j, \ldots, v_k were not, and vertex v_j is in the set Reached. It follows that v is reachable from v_j in Range'. Therefore, the forward closure of Reached in Range' is Range'. □
Lemma 3. The set B computed on line 13 (The backward closure of Reached in Range') is an independent subgraph of Range'. (No SCC has vertices both in B and Range' \ B).

Proof. It is sufficient to show that there is no edge from Range' \ B to B. However, that’s obvious for the existence of such edge (w, v) would imply that $w \in B$, which is impossible since, according to the assumption, $w \in$ Range' \ B. ■

Lemma 4. Let Seeds' be the successors of the vertices in B which are in Range'' = Range' \ B. Then the forward closure of Seeds' in Range'' is Range''.

Proof. Since Reached $\subseteq B$, the forward closure of B in Range' is Range' by Lemma 2. Therefore, for each vertex $v \in$ Range'' there is $w \in B$ such that there is a path $p = (v_0, v_1, \ldots, v_k)$, where $v_0 = w$, $v_k = v$, and $k \geq 1$. Let j be the greatest index with the property that $v_j \in B$, then $v_{j+1} \in$ Seeds' and the path $p' = (v_{j+1}, \ldots, v_k)$ is a path in Range''. Thus v is reachable from v_{j+1} in Range''. It follows that the forward closure of Seeds' in Range'' is equal to Range''. Together with the fact that Range'' is Range' without some independent subgraphs (Lemma 1 and Lemma 3) it implies that if Range'' \ $\neq \emptyset$, then the strengthened invariant is satisfied in the next iteration. ■

So far, we proved the strengthened invariant of line 9 by analysing one iteration of the while loop on lines 8–23. It follows that the whole set OriginalRange computed on line 4 is eventually processed and divided into independent subgraphs by the while loop. To prove the correctness of the algorithm, we still need to show that it correctly identifies an SCC when it sees it and that it never creates a subgraph that is not independent, part of which was already shown.

Lemma 5. If the set OriginalRange on line 7 is an independent subgraph of the whole input graph then OriginalRange is an SCC of the whole input graph if
and only if, for an arbitrary vertex \(v \in \text{OriginalRange} \), the forward closure of \(v \) in \(\text{OriginalRange} \) is equal to \(\text{OriginalRange} \), \(\text{OWCTY}(\{v\}, \text{OriginalRange}) \) does not eliminate any vertex, and the backward closure of \(v \) in \(\text{OriginalRange} \) is equal to \(\text{OriginalRange} \).

Proof. Forward implication. If \(\text{OriginalRange} \) is an SCC, then for each pair of vertices \(z, w \in \text{OriginalRange} \) there is a path from \(z \) to \(w \) in \(\text{OriginalRange} \). The statements for the forward and the backward closures follow directly. There is a vertex \(w \in \text{OriginalRange} \) such that there is a path from \(w \) to \(v \) in \(\text{OriginalRange} \), so \(\text{indegree}(v) > 0 \), and so \(\text{OWCTY}() \) started from \(v \) cannot eliminate any vertex.

Backward implication. For each pair of vertices \(z, w \in \text{OriginalRange} \) there is a path from \(z \) to \(w \) in \(\text{OriginalRange} \), which follows from the assumption about the forward and the backward closures. (There is a path from \(z \) to \(v \) and a path from \(v \) to \(w \).) Since \(\text{OriginalRange} \) is an independent subgraph of the whole input graph (Lemma 3), \(\text{OriginalRange} \) is an SCC of the whole input graph.

Lemma 6. Let \(G = (V, E) \) be an arbitrary graph. For arbitrary vertex \(v \in V \), the forward closure of \(v \) in \(V \), denoted by \(A \), is an independent subgraph of \(G \).

Proof. Similar to the proof of Lemma 3. (There is no edge from \(A \) to \(V \setminus A \).)

Theorem 1. The algorithm in Figure 7 correctly identifies all SCCs in the input graph.

Proof. In the while loop on lines 2–24 the graph is correctly divided into independent subgraphs by repeated application of lines 3 and 4 (Lemma 6). The subgraphs that are SCCs are correctly identified by Lemma 5. The subgraphs
that are not SCCs are divided into smaller independent subgraphs by Lemmas 1–4. To these smaller subgraphs, the procedure is applied recursively. The only case when the recursive application is not executed is the case when \(B = \text{Original Range} \), which can happen only in the first iteration of the while loop on lines 8–23. This is exactly the case when \(\text{Original Range} \) is one SCC, again by Lemma 5. The rest follows from the fact that the relation “being an independent subgraph of” is transitive. \[\]

Lemma 7. The overall time complexity of Recursive OBF is \(\mathcal{O}((r + 1) \cdot (m + n)) \), where \(r \) is the maximal depth of recursion \((r = 0 \text{ if no recursive calls are executed})\).

Proof. Two distinct Recursive OBF procedures on the same depth of recursion operate on disjoint parts of the graph, so at most \(\mathcal{O}(m + n) \) work is done for each recursion depth. Thus the overall complexity is \(\mathcal{O}((r + 1) \cdot (m + n)) \). \[\]

Theorem 2. The depth of recursion of Recursive OBF is at most \(L \) (the length of the longest path in the quotient graph of the whole graph).

Proof. The proof proceeds by induction on \(L \).

Induction basis. If \(L = 0 \), then the whole graph is one SCC. This is detected on the recursion level zero, so the maximal depth of recursion is 0.

Induction step. It is sufficient to show that application of the procedure in Figure 7 (not counting recursive calls) to a graph with \(L = k > 0 \) divides it into subgraphs with \(L \) at most \(k - 1 \). There are two possible cases.

Case 1. The SCC of the vertex \(v \) selected on line 3 is not the first vertex of any of the longest paths in the quotient graph. Then, obviously, the forward closure of \(v \) is an independent subgraph the quotient graph of which does not contain paths longer than \(k - 1 \). The same goes for all independent subgraphs into which it might be further divided in the while loop on lines 8–23.
Case 2. The SCC of the vertex \(v \) selected on line 3 is the first vertex of one of the longest paths in the quotient graph. Then at least one of the longest paths is in the quotient graph of the forward closure of \(v \). The important point is that all longest paths in the quotient graph of the forward closure must have the SCC of \(v \) as their first vertex. (The path not containing the SCC of \(v \) can be extended, because the SCC of \(v \) is a leading SCC). If the SCC of \(v \) is trivial, it is eliminated by OWCTY. If it is non-trivial, it is equal to the first OBF slice. In both cases, the SCC of \(v \) is removed in the first iteration of the while loop on lines 8–23. Which leaves us with a graph with \(L \) less than \(k \). The rest follows easily. ■

Corollary 1. The overall time complexity of Recursive OBF is \(O((L+1) \cdot (m+n)) \).

The upper bound cannot be tightened as shown by the following example. Define \(G_k = (V_k, E_k) \) as follows. Let

\[
\begin{align*}
V'_0 &= \{0\} \\
V'_{i+1} &= V'_i \cup \{2i + 1, 2i + 2\} \\
E'_0 &= \{(0,0)\} \\
E'_{i+1} &= E'_i \cup \{(2i + 1, 2i + 1), (2i + 2, 2i + 2), \}
\end{align*}
\]

\(\max(2i - 1, 0), 2i + 1, (2i + 2, 2i), (2i + 2, 2i + 1) \}

for \(i \in \{0, \ldots, k\} \). Now

\[
\begin{align*}
V_k &= V'_k \cup \{2k + 1\} \\
E_k &= E'_k \cup \{(2k + 1, 2k + 1), \max(2k - 1, 0), 2k + 1)\}
\end{align*}
\]

Figure 8 shows \(G_2 \). Note that \(G_k \) has \(2k + 2 \) vertices and \(5k + 3 \) edges. One possible behaviour of Recursive OBF (OBF for short) on \(G_k \) is as follows. Suppose OBF picks the vertex \(2k \) first. All vertices of \(G_k \) are reachable from \(2k \) so the first rooted chunk is the whole graph. OBF is then run on this rooted
chunk. No vertex is eliminated by OWCTY(), for $2k$ has a predecessor (itself). The first OBF slice is then \(\{2k\} \) which is identified as an SCC by subsequent recursive call to OBFR. The first OBF then continues on successors of \(\{2k\} \), these are \(2k - 2 \) and \(2k - 1 \). Again, OWCTY() does not eliminate anything. Then a backward reachability is started from \(\{2k - 2, 2k - 1\} \) and explores the whole remaining graph except for the vertex \(2k + 1 \). So, the second OBF slice is equal to the graph \(G_{k-1} \) and OBFR is called recursively to process it.

We have shown that maximal recursion depth of OBF on \(G_k \) is \(k + 1 \). At recursion depth \(i \), a graph with at least \(2(k-i) + 2 \) vertices and at least \(5(k-i) + 3 \) edges is explored at least once. So by Corollary 1 the overall time complexity of OBFR on \(G_k \) is \(\Omega(n \cdot (n + m)) \).

4.1 Increasing the degree of parallelism

In [4] it was noticed that OBF has a better worst-case running time than CH, mainly due to possible re-colouring. Still, our initial experiments (cf. Figure 11) showed that CH performs better on graphs with many small SCCs. We attribute this to the higher degree of parallelism in CH, which outweighs the extra costs due to re-colouring in this case.

There is room to increase parallelism in OBFR-P() too. The pseudocode of this “more parallel” version is in Figure 10. It exploits the fact that, after we pick a vertex in \(V \) and identify its forward closure \(\text{Ran}_G(V) \) in \(V \), we can run OBF
on \textit{Range} in parallel and without waiting for its completion we can pick another
vertex from \(V \) and start computing its closure.

So we essentially have three versions of Recursive OBF varying in the "degree of parallelism". This is illustrated in Figure 9. Each diagram starts with a bold vertical axis, where the downward direction represents the progression of time. The numbered columns represent independent parallel procedures. An arrow from column \(i \) to column \(j \) indicates that procedure \(i \) starts procedure \(j \). For simplicity, the figure does not show recursive calls of OBF.

Assume we have a graph whose vertices are partitioned into the following disjoint sets according to how Recursive OBF works on the graph: \(V = B_{11} \cup B_{12} \cup B_{31} \cup B_{32} \cup B_{33} \). \(B_{1(1-3)} = B_{11} \cup B_{12} \cup B_{13} \) is the closure (\textit{Range}) of the first picked vertex (first rooted chunk) and the individual sets are the slices identified by OBF in the closure. Similarly \(B_{2(1)} = B_{21} \) is the closure of the second picked vertex (second rooted chunk) and \(B_{3(1-2)} = B_{31} \cup B_{32} \) is the closure of the third picked vertex (third rooted chunk). For simplicity, we assume there are no trivial components eliminated by OWCTY.

The leftmost diagram in Figure 9 illustrates the operation of the basic Recursive OBF when no parallel procedures are executed. SCCs are processed one by one (delete lines 17 and 19 from Figure 7).

The middle diagram in Figure 9 illustrates the operation of Recursive OBF in Figure 7. Each time a new slice is identified by OBF, a new parallel procedure is started to process the slice. The algorithm first picks a vertex, identifies the set \(B_{1(1-3)} \), then the slices \(B_{11}, B_{12}, \) and \(B_{13} \). Only then it can pick another vertex from the unexplored part of the graph, identify \(B_{2(1)} \), ...

The rightmost diagram in Figure 9 illustrates the operation of the "more parallel" Recursive OBF in Figure 10. It does slicing of \(B_{1(1-3)}, B_{2(1)}, \) and \(B_{3(1-2)} \) in separate parallel procedures. This allows it to get to \(B_{2(1)} \) and \(B_{3(1-2)} \) much faster.

24
Fig. 9. Three versions of Recursive OBF different in degree of parallelism

5 Experimental Evaluation

The experiments were carried out on a cluster of 8 workstations interconnected with 1 Gbps Ethernet. Each workstation was equipped with AMD Athlon™ 64 3500+ Processor and 1 GB RAM. We used the LAM/MPI library for message passing. Our implementation is a distributed memory one. The graph is partitioned into a number (in our case 8) of disjoint parts. Each workstation owns one part. Each workstation runs the same code and communicates with other workstations via the message passing library only. The computation at each workstation proceeds sequentially (the execution of independent parallel procedures is serialised) meaning that no additional threads are executed. This is achieved by maintaining an appropriate piece of information about each procedure in an “array of procedures” and iterating over its elements repeatedly to let each procedure perform some work. Note that a single procedure runs in parallel over different partitions of the graph.

We observed that Recursive OBF suffers from the amount of synchronisation points among individual procedures. However, the amount of synchronisation points may be significantly reduced if independent procedures are started as
proc OBFR-MP(V)

while ($V \neq \emptyset$) **do**

Pick a vertex $v \in V$

$Range := FWD(v, V)$

$Seeds := \{v\}$

$V := V \setminus Range$

in parallel do

OBFR-MPX($Seeds, Range$)

end

od

end

proc OBFR-MPX($Seeds, Range$)

$OriginalRange := Range$

while $Range \neq \emptyset$ **do**

Eliminated, Reached, $Range := OWCTY(Seeds, Range)$

All elements of Eliminated are trivial SCCs

$B := BWD(Reached, Range)$

if ($B = OriginalRange$) **then**

B is SCC

else

in parallel do

OBFR-MP(B)

od

$Seeds := FWD-SEEDS(B, Range)$

fi

$Range := Range \setminus B$

od

end

Fig. 10. Recursive OB with increased parallelism

soon as all data they depend on are ready. Starting independent procedures can be viewed as an implementation detail, however, it has proven to have significant impact on the performance. The three different versions presented in the previous section are recapitulated in the following.

OBFR-S No procedures are executed in parallel. When OB identifies a slice it waits for the complete computation on the slice to finish before continuing.
OBFR-P OBF identifies the slices, and starts a parallel procedure on each slice as soon as the slice is identified.

OBFR-MP Does the same as the previous one, but additionally, within a slice, it starts a parallel procedure as soon as a new forward chunk (forward closure of a picked vertex in a possibly not-rooted slice) within a slice is found.

Our experiments show that indeed the total running time of the algorithm decreases by adding more parallelism, despite the extra overhead (e.g., running various termination detection procedures in parallel), and despite the fact that a single reachability computation is already parallel.

We compare Recursive OB with three other algorithms. Namely FB [17], OBF + FB [4] and CH (Colouring [22]). Like Recursive OB, FB and OBF + FB can be implemented with different degrees of parallelism. For the comparisons we implemented only the most parallel versions of these algorithms, which give the best results. These implementations are denoted by FB-P and OBF-FB-P. CH processes SCCs inherently in parallel; we reused the code from [22] and all experiments are carried out in the same software/hardware environment.

5.1 Measurements

For the evaluation we used synthetic graphs with a regular structure and fixed size SCCs. The aim was to find out how the algorithms work as the SCC size changes. We used two types of graphs. The first type of graph, called LmLmTn was of the form Loop(m) || Loop(m) || Tree(n), where Loop(m) is a cycle with m states, Tree(n) is the binary tree of depth n, and || denotes the Cartesian product of graphs. This graph has $2^{n+1} - 1$ components of size $(m + 1)^2$. Its quotient graph is a binary tree.
The second type of graph, called LimLon, uses Line\((m) \) being a sequence of \(m \) states. It is of the form Line\((m) \parallel \) Line\((m) \parallel \) Loop\((n) \parallel \) Loop\((n) \) and consequently has \(m^2 \) components of size \(n^2 \). The quotient graph of the second type is a square mesh with edges oriented right and down. In the second type there are many paths of the same length to the same vertex.

We also experimented with graphs that arise as state spaces in real model checking applications. The names of these graphs are prefixed with “cwı”, “vası” and “swp”. The former two are taken from the VLTS Benchmark Suite \cite{7}\. The swp-graph, called swp_demnreq, models the behaviour of a sliding window protocol with \(m \) distinct data elements, window size \(2n \), and queue size \(p \). The complete list is in Tables 1 and 2.

The size of the graphs is relatively small and in principle they could be decomposed on a single machine, but they are large enough for experiments with distributed algorithms to provide insight.

The results for synthetic graphs are in Table 3. The results for real graphs are in Table 4. All runtimes are in seconds, ”n/a” means that the runtime exceeded 36000 seconds (10 hours). Graphs of dependency of runtime on SCC size are in Figure 12 and in Figure 13. We measured this dependency for synthetic graphs only. Figure 12 does not contain results for all graphs of type 1 since numbers of vertices of some of these graphs differ too much. Only graphs with approximately 3000000 vertices were chosen. The graphs of type 2 have all approximately 4000000 vertices, so Figure 13 contains results for all of them.

5.2 Evaluation

There is one important issue concerning space complexity. To implement a reachability analysis in linear time we need a way to determine whether a vertex has

\footnote{Note that we consider the graph of all transitions, while \cite{22} considered only (invisible) \(\tau \)-transitions.}
Fig. 11. Dependency of runtime on SCC size, comparison of OBFR-S and CH, type 1 synthetic graphs (log. scale)

Fig. 12. Dependency of runtime on SCC size, type 1 synthetic graphs (log. scale)
<table>
<thead>
<tr>
<th>State space</th>
<th>N. of SCCs</th>
<th>Size of one SCC</th>
<th>States</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>L10L10T10</td>
<td>2047</td>
<td>121</td>
<td>247687</td>
<td>742496</td>
</tr>
<tr>
<td>L100L100T4</td>
<td>31</td>
<td>10 201</td>
<td>316 231</td>
<td>938 492</td>
</tr>
<tr>
<td>L15L15T10</td>
<td>2047</td>
<td>256</td>
<td>524 032</td>
<td>1 571 840</td>
</tr>
<tr>
<td>L4L4T16</td>
<td>131071</td>
<td>256</td>
<td>3 276 775</td>
<td>9 803 000</td>
</tr>
<tr>
<td>L20L20T12</td>
<td>8 191</td>
<td>441</td>
<td>3 612 231</td>
<td>10 836 252</td>
</tr>
<tr>
<td>L80L80T8</td>
<td>511</td>
<td>6 561</td>
<td>3 352 671</td>
<td>10 051 452</td>
</tr>
<tr>
<td>L350L350T4</td>
<td>31</td>
<td>123 201</td>
<td>3 819 231</td>
<td>11 334 492</td>
</tr>
<tr>
<td>L1750L1750T0</td>
<td>1</td>
<td>3 066 000</td>
<td>3 066 001</td>
<td>6 132 002</td>
</tr>
<tr>
<td>L1750L1750T1</td>
<td>3</td>
<td>3 066 001</td>
<td>4 198 003</td>
<td>24 528 008</td>
</tr>
</tbody>
</table>

Li200Lo10	40 000	100	4 000 000	15 960 000
Li125Lo16	15 625	256	4 000 000	15 936 000
Li100Lo20	10 000	400	4 000 000	15 920 000
Li80Lo25	6 400	625	4 000 000	15 900 000
Li67Lo30	4 489	900	4 040 100	16 039 800
Li50Lo40	2 500	1 600	4 000 000	15 840 000
Li40Lo50	1 600	2 500	4 000 000	15 800 000
Li30Lo67	900	4 489	4 040 100	15 891 060
Li25Lo80	625	6 400	4 000 000	15 680 000
Li20Lo100	400	10 000	4 000 000	15 600 000
Li16Lo125	256	15 625	4 000 000	15 500 000
Li10Lo200	100	4 000	4 000 000	15 200 000

Table 1. Synthetic graphs used in experiments

been already visited or not in constant time. This is usually accomplished by allocating an array of booleans with \(n \) elements, one for each vertex. Algorithms that perform many reachabilities in parallel must have such an array for each of them. Our implementations that fall into this category are FB-P, OBF-FB-P, OBFR-P, OBFR-MP. There is no problem with reachabilities in the same depth of recursion. Since they operate on disjoint parts of the graph, one array of size \(n \) is enough. But for procedures in different depths we need separate arrays. And so the space complexity is \(O(m + n \cdot \text{(maximum depth of recursion)}) \).

Although the maximum depth of recursion can be as high as \(n \), in our experiments the algorithm we are mainly interested in, Recursive OBF, reached maximum depth of 15. This makes us believe that space complexity is not a problem of Recursive OBF. However, the FB algorithm exceeded depth 200 in
<table>
<thead>
<tr>
<th>State space</th>
<th>N. of SCCs</th>
<th>Max. SCC size</th>
<th>States</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>cwi_2165_8723</td>
<td>47926</td>
<td>423503</td>
<td>2165446</td>
<td>8723465</td>
</tr>
<tr>
<td>cwi_2416_17065</td>
<td>2150392</td>
<td>6</td>
<td>2416632</td>
<td>17065592</td>
</tr>
<tr>
<td>cwi_7886_90101</td>
<td>1</td>
<td>7886608</td>
<td>7886608</td>
<td>9010007</td>
</tr>
<tr>
<td>vasy_11026_24660</td>
<td>10074720</td>
<td>91011026932</td>
<td>24660513</td>
<td></td>
</tr>
<tr>
<td>vasy_1112_5290</td>
<td>160061</td>
<td>71968</td>
<td>1112490</td>
<td>5290860</td>
</tr>
<tr>
<td>vasy_1232_27667</td>
<td>11214774</td>
<td>91012323703</td>
<td>27667803</td>
<td></td>
</tr>
<tr>
<td>vasy_2581_11442</td>
<td>274690</td>
<td>26796</td>
<td>2581374</td>
<td>1142382</td>
</tr>
<tr>
<td>vasy_4230_3944</td>
<td>2398982</td>
<td>49151</td>
<td>4220790</td>
<td>13944372</td>
</tr>
<tr>
<td>vasy_4338_6666</td>
<td>828412</td>
<td>26796</td>
<td>4338672</td>
<td>1566588</td>
</tr>
<tr>
<td>vasy_5020_19353</td>
<td>2041</td>
<td>6013920</td>
<td>6020550</td>
<td>1933474</td>
</tr>
<tr>
<td>vasy_5120_1031</td>
<td>4638059</td>
<td>1902</td>
<td>6120718</td>
<td>11031292</td>
</tr>
<tr>
<td>vasy_8084_42933</td>
<td>323629</td>
<td>7054752</td>
<td>8082905</td>
<td>42933110</td>
</tr>
<tr>
<td>swp_d2w2q2.s</td>
<td>1</td>
<td>1429670</td>
<td>1429670</td>
<td>6704544</td>
</tr>
<tr>
<td>swp_d2w2q3.s</td>
<td>1</td>
<td>5323836</td>
<td>5323836</td>
<td>25236556</td>
</tr>
<tr>
<td>swp_d5w2q2.s</td>
<td>1</td>
<td>5168596</td>
<td>5168596</td>
<td>24615576</td>
</tr>
</tbody>
</table>

Table 2. Real graphs used in experiments

<table>
<thead>
<tr>
<th>State space</th>
<th>FB-P</th>
<th>OBFR-S</th>
<th>OBFR-P</th>
<th>OBFR-MP</th>
<th>OBFR-FBP</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>L10L10T10</td>
<td>10</td>
<td>128</td>
<td>25</td>
<td>8</td>
<td>8</td>
<td>75</td>
</tr>
<tr>
<td>L10L100T4</td>
<td>13</td>
<td>19</td>
<td>15</td>
<td>11</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>L15L15T10</td>
<td>16</td>
<td>118</td>
<td>56</td>
<td>16</td>
<td>17</td>
<td>142</td>
</tr>
<tr>
<td>LAL4T16</td>
<td>2743</td>
<td>6603</td>
<td>671</td>
<td>309</td>
<td>297</td>
<td>325</td>
</tr>
<tr>
<td>L20L20T12</td>
<td>224</td>
<td>575</td>
<td>287</td>
<td>74</td>
<td>71</td>
<td>456</td>
</tr>
<tr>
<td>L80L80T8</td>
<td>94</td>
<td>107</td>
<td>110</td>
<td>34</td>
<td>45</td>
<td>755</td>
</tr>
<tr>
<td>L35OL350T4</td>
<td>83</td>
<td>91</td>
<td>88</td>
<td>38</td>
<td>45</td>
<td>1583</td>
</tr>
<tr>
<td>L175OL1750T0</td>
<td>34</td>
<td>31</td>
<td>43</td>
<td>17</td>
<td>16</td>
<td>1021</td>
</tr>
<tr>
<td>L175OL1750T1</td>
<td>148</td>
<td>138</td>
<td>166</td>
<td>87</td>
<td>82</td>
<td>5333</td>
</tr>
<tr>
<td>L130L010</td>
<td>1982</td>
<td>1964</td>
<td>1131</td>
<td>76</td>
<td>58</td>
<td>9317</td>
</tr>
<tr>
<td>L125L016</td>
<td>1105</td>
<td>975</td>
<td>740</td>
<td>61</td>
<td>52</td>
<td>5827</td>
</tr>
<tr>
<td>L100L020</td>
<td>754</td>
<td>588</td>
<td>520</td>
<td>65</td>
<td>51</td>
<td>1513</td>
</tr>
<tr>
<td>L80L025</td>
<td>548</td>
<td>465</td>
<td>454</td>
<td>97</td>
<td>77</td>
<td>5600</td>
</tr>
<tr>
<td>L67L030</td>
<td>510</td>
<td>356</td>
<td>484</td>
<td>98</td>
<td>44</td>
<td>3080</td>
</tr>
<tr>
<td>L50L040</td>
<td>357</td>
<td>236</td>
<td>163</td>
<td>48</td>
<td>48</td>
<td>3350</td>
</tr>
<tr>
<td>L40L050</td>
<td>286</td>
<td>175</td>
<td>126</td>
<td>90</td>
<td>43</td>
<td>2628</td>
</tr>
<tr>
<td>L30L067</td>
<td>174</td>
<td>127</td>
<td>110</td>
<td>43</td>
<td>44</td>
<td>2364</td>
</tr>
<tr>
<td>L25L080</td>
<td>140</td>
<td>102</td>
<td>105</td>
<td>46</td>
<td>46</td>
<td>2972</td>
</tr>
<tr>
<td>L30L0100</td>
<td>176</td>
<td>88</td>
<td>80</td>
<td>43</td>
<td>40</td>
<td>2782</td>
</tr>
<tr>
<td>L16L0125</td>
<td>106</td>
<td>77</td>
<td>115</td>
<td>71</td>
<td>38</td>
<td>2148</td>
</tr>
<tr>
<td>L10L0200</td>
<td>81</td>
<td>58</td>
<td>99</td>
<td>62</td>
<td>45</td>
<td>1895</td>
</tr>
</tbody>
</table>

Table 3. Runtimes for synthetic graphs (in seconds)
<table>
<thead>
<tr>
<th>State space</th>
<th>FB</th>
<th>OBFR-S</th>
<th>OBFR-P</th>
<th>OBFR-MP</th>
<th>OBFR-FB-P</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>cwi_21655,8723</td>
<td>21</td>
<td>43</td>
<td>30</td>
<td>29</td>
<td>22</td>
<td>49</td>
</tr>
<tr>
<td>cwi_2416_17605</td>
<td>76</td>
<td>8791</td>
<td>942</td>
<td>51</td>
<td>56</td>
<td>126</td>
</tr>
<tr>
<td>cwi_7838_59101</td>
<td>63</td>
<td>58</td>
<td>107</td>
<td>102</td>
<td>72</td>
<td>227</td>
</tr>
<tr>
<td>vasy_1026_24660</td>
<td>3387</td>
<td>n/a</td>
<td>3391</td>
<td>416</td>
<td>827</td>
<td>471</td>
</tr>
<tr>
<td>vasy_112790</td>
<td>168</td>
<td>5611</td>
<td>399</td>
<td>73</td>
<td>73</td>
<td>366</td>
</tr>
<tr>
<td>vasy_2323_27667</td>
<td>4483</td>
<td>n/a</td>
<td>3942</td>
<td>500</td>
<td>1016</td>
<td>509</td>
</tr>
<tr>
<td>vasy_2681_1442</td>
<td>169</td>
<td>6182</td>
<td>2084</td>
<td>64</td>
<td>109</td>
<td>276</td>
</tr>
<tr>
<td>vasy_29394_13944</td>
<td>531</td>
<td>8348</td>
<td>976</td>
<td>347</td>
<td>1987</td>
<td>151</td>
</tr>
<tr>
<td>vasy_4358_5666</td>
<td>209</td>
<td>14352</td>
<td>4443</td>
<td>107</td>
<td>110</td>
<td>310</td>
</tr>
<tr>
<td>vasy_6020_1933</td>
<td>60</td>
<td>147</td>
<td>93</td>
<td>51</td>
<td>34</td>
<td>130</td>
</tr>
<tr>
<td>vasy_812_1031</td>
<td>888</td>
<td>26611</td>
<td>1483</td>
<td>282</td>
<td>299</td>
<td>592</td>
</tr>
<tr>
<td>vasy_8082_12933</td>
<td>162</td>
<td>440</td>
<td>640</td>
<td>453</td>
<td>407</td>
<td>280</td>
</tr>
<tr>
<td>swp_d2w2q2.s</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>16</td>
<td>6</td>
<td>44</td>
</tr>
<tr>
<td>swp_d2w2q3.s</td>
<td>55</td>
<td>13</td>
<td>28</td>
<td>55</td>
<td>18</td>
<td>102</td>
</tr>
<tr>
<td>swp_d3w2q2.s</td>
<td>38</td>
<td>16</td>
<td>42</td>
<td>35</td>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>Total runtime</td>
<td>10324</td>
<td>>142621</td>
<td>18572</td>
<td>2583</td>
<td>5051</td>
<td>3702</td>
</tr>
</tbody>
</table>

Table 4. Runtimes for real graphs (in seconds)

Fig. 13. Dependency of runtime on SCC size, type 2 synthetic graphs (log scale)
our experiments. It did not prevent the algorithm from successful computation of SCCs, because our graphs are relatively small. Nevertheless, this high recursion depth kills the benefit of having accumulated memory of a cluster of workstations. If we add that FB is much slower if independent subgraphs are not processed in parallel, we can conclude that FB is not a very good distributed algorithm. On the other hand, OBF + FB reached maximum recursion depth of 17. It seems that the uppermost OBF is so successful in slicing the whole graph, that the amount of work left for FB that processes the slices is relatively small.

And now for some comments on the measured runtimes. First for the synthetic graphs. As one can see from Table 3, OBFR-MP and OBF-FB-P together are clear winners. Their runtimes are practically the same because most of the decomposition was done by the first OBF which is the same for both algorithms. The slices identified by the OBF were then processed in parallel. It did not matter if OBF or FB was used for them because of the structure of the slices.

FB, OBFR-S and OBFR-P worked quite well on graphs with large SCCs, but they require a long time to decompose a graph with many small components. OBFR-P was the best of them, but its performance on graphs with many small components is still poor. The reason for the big difference between OBFR-P and OBFR-MP is that some slices identified by the first OBF contained many parts with no edges between them and waiting for OBF to finish on one part before moving to next part affects the performance considerably.

Interestingly enough, for the synthetic graphs of type 1, unlike most of the other algorithms, especially OBFR-S, the CH algorithm worked better on graphs with many small components (Figure 11). We were unable to explain this behaviour. Moreover, it was not confirmed on type 2 graphs (Figure 13). Another interesting point is the extremely poor behaviour of CH on type 2 graphs. This is explained by many paths of the same length leading to the same vertex, which causes frequent re-colouring.
The experiments on real graphs (Table 4) have only one winner, OBFR-MP. Yet, its victory was not as clear as the victory for synthetic graphs. In particular, CH turned out to be successful. We included total runtimes for all real graphs to allow for better comparison.

The structure of the graphs was not regular, so recursive OBF had to go deeper to decompose the graph. Since the decomposition was not done by the first OBF, the FB algorithm had much more work in OBF + FB than for synthetic graphs, which resulted in poor behaviour for some graphs, especially vasy_12323_27667 and vasy_4220_13944.

6 Conclusion

In this paper we listed and compared known distributed algorithms for the decomposition of directed graphs into their strongly connected components. We also proposed a new algorithm, called Recursive OBF, based on recursive application of the OBF technique introduced in [4]. The correctness of the new algorithm was proven formally. We also report on an extensive experimental study we did to evaluate the new algorithm. Recursive OBF outperformed all the other algorithms in most cases.

Our experiments show that the way the algorithm is implemented influences its performance a great deal. In particular, the best implementation turned out to be the one with the highest degree of parallelism, that is the one which starts another parallel procedure every time a part of the graph that can be processed independently has been identified.

There is one type of graphs where the CH algorithm [22] may be the best choice. These are graphs consisting of many unconnected islands. Such graphs arise for instance when considering only (invisible) τ-transitions as a preprocessing step to branching bisimulation reduction. CH starts working on all islands
simultaneously, but all the other algorithms process them one by one unless they contain indegree 0 vertices. If these islands are small enough, re-colouring is not a problem and CH is very fast. This suggests an aim for future work: to improve Recursive OBF to work better on graphs with many unconnected islands.

Recursive OBF is also suitable for multi-core shared-memory architectures that are going to be the standard in the near future. Implementing and evaluating Recursive OBF on such architectures is another aim for future work.

References

