Abstract—Mixers are commonly used in communication systems for frequency translation, and usually exploit switching in some form to implement multiplication by a square wave. However, at the low supply voltages required for new CMOS technologies, switches are non- or poorly conducting in the "middle voltage range" between the supply voltages. To solve this problem, gates are often driven outside the supply voltage range, but this results in gate-oxide reliability problems, especially in future technologies with very thin oxides. We propose a new CMOS mixer topology that can operate at low supply voltages, without driving gates outside the supply range. It exploits only switches connected to the supplies, just as in digital CMOS inverters. Mixing is achieved exploiting two cross-coupled transconductors, which are alternatingly activated and de-activated by the switches. A down conversion mixer prototype with 12 dB conversion gain was designed and realized in standard 0.18\(\mu\)m CMOS. It achieves satisfactory mixer performance up to 4GHz, at a supply voltage of 1 Volt. Moreover, the mixer topology features a fundamental high frequency noise figure benefit.

Keywords—CMOS, low voltage design, mixers, transconductor, receiver, communication circuits.

I. INTRODUCTION

Mixers are commonly used for frequency translation in radio frequency (RF) communication systems. The frequency translation results from multiplication of the RF input signal with a "local oscillator" (LO) signal. In practice, mixers are preferably implemented using "hard switching" via a large LO signal, which mathematically corresponds to multiplication with a square wave, instead of a sine wave. This renders higher conversion gain (\(2/\pi\) instead of \(\frac{1}{2}\)), and lower noise figure. Especially in CMOS and BiCMOS technology, where MOSFET switches are readily available, almost all mixers exploit switching in some form [1].

A key problem for the realization of analog circuits in current and future digital CMOS technology is the continuously reducing supply voltage. This leads to the well-known problem of non- or poorly conducting switches in the "middle voltage range" between the supply voltages [2]. This is a severe problem in analog and mixed analog-digital circuits exploiting switches, like A/D and D/A converters and switched capacitor circuits, but also in mixers. We will discuss this mixer switch problem in section II, taking a commonly used active CMOS mixer as a starting point. A "switched transistor" mixer will then be proposed as a solution in section III [6]. In section IV we show that it has a fundamental high-frequency noise advantage. Experimental results on a 1 Volt Switched Transconductor mixer realized in 0.18\(\mu\)m CMOS are reported in section V, while conclusion are presented in section VI.

II. SWITCH PROBLEM IN TRADITIONAL MIXERS

Figure 1a shows a commonly used active mixer (single balanced version). It consists of a transconductance stage M1, switches M2 and M3, and a load network. The transconductance stage (M1) is biased around \(V_B\) and is designed to implement a linear voltage to current conversion from \(v_{RF}\) to the variation in the drain current of M1. Source degeneration resistors are often added for linearization. The switches M2 and M3 are driven by anti-phase LO-signals LO+ and LO-, balanced around a bias voltage \(V_{B,LO}\). To mimic multiplication with a square wave at the LO frequency, the LO-amplitude must be chosen sufficiently high to fully switch the transconductor current \(I_{d1}\) to either \(I_{out1}\) or \(I_{out2}\). For the
purpose of a first order functional description, we can model the operation of M2 and M3 as switches driven by the logic signals LO and its inverse \(\overline{LO} \), as shown in Figure 1b. Actually, M2 and M3 are preferably operated in saturation, to act alternatingly as cascode devices to M1, improving output resistance and linearity. Depending on the application, the output currents are connected to different load networks (e.g. resistors to positive supply voltage \(V_{dd} \) to provide wideband voltage conversion gain, or a tuned LC network to provide gain only in a narrow band). As we want to focus on the V-I core that realizes the frequency translation, we will leave out this load network for now. Thus, the mixer has a conversion transconductance, instead of conversion voltage gain.

Consider now the operation of this circuit for low supply voltages. For good linearity, transistor M1 in the \(Gm \)-stage must have sufficient gate-source and drain-source voltage headroom: only if M1 is well in strong inversion and saturation, the transconductance stage achieves good linearity. To achieve an IIP3 well above 0 dBm, typical minimum drain-source voltage values for a 0.18 \(\mu \)m CMOS process are in the range of 0.5V or more. With threshold voltages around 0.5V, this means that the minimum voltage at the gate of M2 and M3, to switch these devices on, is typically higher than 1 Volt. Moreover, large overdrive voltage for the switches is desired to achieve low switch resistance. Therefore, either supply voltages well above 1 Volt are required, or a switch driver circuit, driving the gate well above \(V_{dd} \). Such drivers are not easily implemented at GHz frequencies, especially when wide bandwidth is required and LC tanks are impractical. Moreover, the maximum allowed gate voltage is decreasing for new technologies (oxide reliability).

To address these problems, folded topologies have been proposed, e.g. with PMOS switches following a NMOS transconductance stage [3]. However, this requires adding a bias current source that adds substantial noise, unless significant voltage headroom is reserved (but then the switch again becomes the problem). In other popular mixers, like the passive mixer, very similar problems occur, especially in downconversion mixers, where AC coupling often is not possible (e.g. zero IF architecture) or requires very large capacitors (low IF architecture). The essence of the problem is the same: achieving low switch resistance at voltage levels "in the middle range" between the supply voltages is impossible without driving gates outside the supply. This problem becomes even more severe in future processes with even thinner gate-oxides and lower supply voltages, while threshold voltage only scale down slowly. Alternative mixer architectures able to operate at a low supply voltage directly compatible with digital CMOS technology are therefore desired.

![Figure 1: a) Single balanced active mixer. b) Functional representation for large switching signals.](image)

III. SWITCHED TRANSCONDUCTOR MIXER

The key to the new mixer is the observation that the problems discussed in the previous section relate to requiring a conductive channel at a voltage level in "the middle range" between the supplies \(V_{ss} \) and \(V_{dd} \). However, it is easily possible to make low ohmic switches, provided that their conductive channel is connected to \(V_{ss} \) (NMOST) or \(V_{dd} \) (PMOST). We can rely on this even in future CMOS technologies, for the simple reason that digital logic circuits rely on this functionality (inverters).

Figure 2a shows conceptually how a single balanced mixer can be constructed using two matched transconductors \(G_{m1} \) and \(G_{m2} \) and switches connected to voltages \(V_{ss} \) and \(V_{dd} \) only. The transconductors are alternatingly switched on by a switch to \(V_{ss} \), and switched off by a switch to \(V_{dd} \). Thus \(G_{m1} \) is on, if \(G_{m2} \) is off, and the other way around. Now, for matched transconductors and ideal timeless switching, either \(I_{out1} \) or \(I_{out2} \) is equal to \(G_m V_{RF} \), just as in Figure 1. Actually, the circuits implement the same mixer function in different ways: the traditional mixer by a V-I conversion followed by current switching, the new mixer by directly switching transconductors (activate one of two "Switched Transconductors" \(G_{m1} \) and \(G_{m2} \)).

Single balanced mixers have a strong output signal at the LO-frequency, which can be cancelled in a double balanced version. By adding two additional transconductors driven by an anti-phase RF signal, as shown in Figure 2b, this is readily implemented. Again,
the double balanced switched transconductor mixer has the same nominal conversion gain than a double balanced version of the active mixer in Figure 1.

Figure 2: a) Single balanced Switched Transconductor Mixer concept; b) Concept of a Double balanced Switched Transconductor Mixer.

Despite of the functional equivalence, there are also very significant differences. Most notably, in the traditional mixer there is an internal node between the transconductor and the output node, which renders bandwidth limitations due to parasitic capacitance (node n1 in Figure 1) and also distortion and noise effects. This internal node is lacking in the switched transconductor mixer. Moreover, the switches to Vss constitute a common-mode current path for the two active transconductors to the output. This ideally renders a constant common-mode output current, for ideal timeless switching. In practice, switching transients occur with most energy concentrated at 2fLO. This can easily be filtered out by capacitors to ground. These common-mode currents also come with noise, however this hardly harms mixer noise figure as will be discussed in the next section.

IV. HIGH FREQUENCY SWITCH NOISE ADVANTAGE

As mentioned in the previous section, the noise current introduced by the switching devices is a common mode noise current. Thus, this noise current cancels in the differential output current I_{out1}-I_{out2}. For the mixer in Figure 1 the situation is completely different. This is because there is a direct noise current path between the outputs out1 and out2: when the nodes LO+ and LO- have approximately the same voltage, both switch transistors conduct and have significant noise current, resulting in a noise peak around the zero-crossing [4]. Also, LO noise is amplified during this time interval [1][4]. This noise comes on top of the noise of the transconductance stage, and dominates at high frequencies where the “zero-crossing region” constitutes a large portion of the LO time period. A similar effect occurs in passive mixers. In contrast, the switched transconductor mixer doesn't show this effect, as noise generated by the switch devices is common mode noise!

The difference in HF noise was verified by simulations. The transconductor was implemented using NMOSTs with W/L=15/0.3, nominally biased at V_{GS}=V_{DS}=0.65Volt (0.5Volt threshold voltage). The switches have W/L=15/0.18 (NMOST) and 30/0.18 (PMOST), and are driven with 0dBm LO power (50 ohm termination, balanced signals around a common mode voltage V_{dd}/2). The conversion transconductance is around 1mS, and the bandwidth of both mixers was around 4GHz. Figure 3 shows the simulated thermal output noise current density with a low-ohmic termination of both the switched transconductor mixer core and the traditional active mixer.

Figure 3: Output Noise at 1MHz of a Switched Transconductor Mixer and Traditional Active mixer as a function of the LO frequency.

Clearly the output noise behavior is very different: where the Switched Transconductor mixer output noise decreases (roughly following the frequency roll-off of the conversion transconductance), the output noise of the traditional mixer increases! This low noise of the Switched Transconductor mixer is highly desired, because Low Noise Amplifiers usually have decreasing gain at high frequencies, thus increasing the relevance of low mixer noise at high LO frequencies.

V. IMPLEMENTATION AND MEASUREMENTS

In order to verify the new mixer concept experimentally, a down conversion mixer was designed to operate at 1 Volt supply voltage. Figure 4 shows the schematic that was realized on chip: a straightforward simple implementation of the double balanced Switched Transconductor Mixer concept of Figure 3. The
transconductors are shown in the dashed boxes (M5-M8). Somewhat arbitrarily, the transconductance was chosen around 1mS. Transistors M1 and M2 implement the switches to Vss, while M3 and M4 implement the switches to Vdd. They are driven by anti-phase sine-wave signals around a common voltage equal to the inverter switch threshold (close to Vdd/2). Note that sine-waves are used here for experimental reasons, but full swing digital signals can also be used, enhancing the compatibility with digital CMOS.

To generate an output voltage, an I-V converter must be added. This is implemented by the common-mode current-absorption circuit with two resistors and two PMOSTs in the upper part of Figure 4. However, this circuit has a rather low common-mode output voltage. By adding a bias current source Ib, the common-mode output voltage is shifted up to a value around 0.6 Volt, to fit in the 1Volt supply voltage. The mixer was designed for a maximum conversion gain of around 20 dB (Rout1=Rout2=10kohm), which can be lowered adding an external resistor between the output Vout1 and Vout2. In the measurements that follow, this resistor was chosen in the middle of the gain range to achieve 12dB conversion gain.

![Figure 4: Double balanced Switched Transconductor mixer implemented on chip.](image)

The mixer was fabricated in a standard industrial 0.18μm CMOS process. Figure 5 shows a photograph of the mixer core. Termination resistors of 50ohm were added on chip for all the RF and LO inputs for ease of measurement. The chip was measured via wafer probing, using baluns for single to differential conversion at the input. A differential probe was used to measure the differential output voltage. The IF bandwidth was 2MHz, limited by the input capacitance of the probe (>10MHz is easily obtainable with an on-chip load).

![Figure 5: Photograph of the Switched Transconductor mixer core (0.18 μCMOS, 75um * 65um) (capacitors not shown).](image)

The conversion gain as a function of frequency was measured using two baluns with overlap in frequency range: one for the 300MHz-3GHz band and one for 2-18GHz. The measurements are shown in Figure 6.

![Figure 6: Conversion Gain as a function of the LO frequency.](image)

Despite of experimental inaccuracies it can be concluded that the mixer has 12dB conversion gain and around 4GHz LO bandwidth, which is in reasonable agreement with simulation. The current consumption of the mixer consists of a more or less constant term of 180μA for the transconductors core, and a dynamic term determined by the switching (≈ 200μA/GHz). Note that the power consumption is low because the transconductance is rather low, resulting in a high equivalent input noise resistance. To achieve less than 15dB noise figure with respect to 50ohm, roughly 10
times higher transconductance, i.e. 10 times more power consumption, is needed ("Impedance Level Scaling", see section VI of [5]). At 1 GHz this will result in roughly 4nW power consumption.

Figure 7 shows the linearity of the mixer as a function of frequency. An IIP3 better than +4dBm is typically achieved for 12 dB conversion gain. Simulations and experiments with varying Rout showed that this linearity is limited by the output swing. Actually CG and IIP3 can be traded. Simulations show that an IIP3 in excess of +10dBm is possible if the output voltage swing is reduced.

![Figure 7: IIP3 as a function of the LO frequency.](image)

Last, but certainly not least, the remarkable noise properties of the new mixer were verified by measurements. Figure 8 shows the output noise as a function of frequency, measured at 1MHz IF frequency. The trend is similar to the conversion gain fall off, in agreement with the simulation results shown in Figure 3. Also the values fit roughly to the noise current expected from the transconductor core according to simulation. The 1/f corner frequency was around 1MHz.

![Figure 8: Density of the output noise at 1MHz versus LO frequency](image)

VI. CONCLUSIONS

A 1 Volt switched transconductor mixer has been realized in standard 0.18µm CMOS, with 0.5Volt threshold devices. It can operate at such low supply voltage because only switches with a conductive channel connected to either Vss or Vdd are used. This makes the mixer directly compatible with future digital CMOS processes, without gate-oxide reliability problems associated with voltage driving outside the supply rails. The mixer also has attractive HF noise properties. In contrast to traditional active and passive CMOS mixers, the noise produced by the switch transistors is common-mode noise, which is rejected at the differential output. As a consequence, the output noise of the switched transconductor mixer does not increase with LO frequency, in contrast to traditional active and passive mixers.

ACKNOWLEDGEMENTS

Philips Research Laboratories is acknowledged for the IC implementation. Eduard Stikvoort and Henk de Vries are acknowledged for useful discussions.

REFERENCES