Distributed Branching Bisimulation Minimization
by Inductive Signatures

Stefan Blom Jaco van de Pol
University of Twente, Formal Methods and Tools *
P.O.-box 217, 7500 AE, Enschede, The Netherlands
{scclblom,vdpol}@cs.utwente.nl

Technical Report TR-CTIT-09-37
October 2009

Abstract

We present a new distributed algorithm for state space minimization modulo branching
bisimulation. Like its predecessor it uses signatures for refinement, but the refinement process
and the signatures have been optimized to exploit the fact that the input graph contains no
τ-loops.

The optimization in the refinement process is meant to reduce both the number of iterations
needed and the memory requirements. In the former case we cannot prove that there is an
improvement, but our experiments show that in many cases the number of iterations is smaller.
In the latter case, we can prove that the worst case memory use of the new algorithm is linear
in the size of the state space, whereas the old algorithm has a quadratic upper bound.

The paper includes a proof of correctness of the new algorithm and the results of a number
of experiments that compare the performance of the old and the new algorithms.

This report is an extension of [10] with full proofs.

1 Introduction

The idea of distributed model checking of very large systems, is to store the state space in the
collective memory of a cluster of workstations, and employ parallel algorithms to analyze the
graph. One approach is to generate the graph in a distributed way, and on-the-fly (i.e. during
generation) run a distributed model checking algorithm. This is what is done in the DiVinE toolset
[4]. This is useful if the system is expected to contain bugs, because the generation can stop after
finding the first bug.

Another approach is to generate the full state space in a distributed way, and subsequently run
a distributed bisimulation reduction algorithm. The result is usually much smaller, and satisfies
the same temporal logic properties. The minimized graph could be small enough to analyse with
sequential model checkers. This approach is useful for certification, because many properties can
be checked on the minimized graph. This paper contributes to the second approach.

*This work has been partially funded by the EU under grant number FP6-NEST STREP 043235 (EC-MOAN).
The process-algebraic way of abstracting from actions is to hide them by renaming them to the invisible action τ. To reason about equivalence of these abstracted models, branching bisimulation [21, 5] can be used. Because branching bisimulation is coarser than strong bisimulation, this leads to smaller state spaces modulo reduction.

Distributed minimization algorithms have been proposed in [8, 9] for strong bisimulation, and in [7] for branching bisimulation. These are signature-based algorithms, which work by successively refining the trivial partition, according to the (local) signature of states with respect to the previous partition.

The best-known sequential algorithm [14] for branching bisimulation reduction assumes that the state space has no τ-cycles. The idea is that any τ-cycles can be removed in linear time, by Tarjan’s algorithm to detect (and eliminate) strongly connected components (SCC) [20]. Eliminating SCCs preserves branching bisimulation.

Because eliminating τ-cycles in distributed graphs seemed complicated, the algorithm in [7] works on any LTS, i.e. it doesn’t assume the absence of τ-cycles. This generality came with a certain cost: signatures have to be transported over the transitive closure of silent τ-steps. For some cases this leads to increased time and memory usage.

Later, several distributed SCC detection (and elimination) algorithms have been developed [18, 17, 15, 3]. It has already been reported in [17] that running SCC elimination as a preprocessing step to the branching minimization algorithm of [7], reduces the overall time. Note that this gain was achieved even though the minimization algorithm doesn’t assume that the input graph is τ-acyclic.

In this paper, we further improve this method, by exploiting the fact that the input graph of the minimization algorithm has no τ-cycles. Using this extra knowledge, we are able to develop a distributed minimization algorithm that runs in less time and memory.

At the heart of our improved method is a notion of inductive signature. Normally, during a round of signature computations, only the signatures of the previous round may be used. The basic idea of inductive signatures is that the new signature of a state may depend on the current signature of its \rightarrow^a-successors, provided a is guaranteed to terminate. We will first illustrate this notion for strong bisimulation, and then apply it to branching bisimulation, where τ is cycle-free, i.e. \rightarrow^τ is a terminating transition. Note that if all action labels are terminating, the graph is actually a directed acyclic graph, for which it is known that there is a linear algorithm for bisimulation reduction.

Overview. In the next section, we will explain the theory and prove the correctness of the improved signature bisimulation. In section 3, we explain how we turned the definition of inductive signature bisimulation onto a distributed algorithm and how we implemented it on top of the LTSmin toolset\(^1\). We show the results of running the tool on several problems in Section 4.

2 Theory

In this section, we start by recalling the basic definitions of LTS and bisimulation. Followed by the definitions of signature refinement from previous papers. Then we present inductive signatures for strong bisimulation followed by inductive signatures for branching bisimulation. We end this section with the correctness proof for branching bisimulation.

\(^1\)http://fmt.cs.utwente.nl/tools/ltsmin/
2.1 Preliminaries

First, we fix a notation for labeled transition systems and recall the definitions of strong bisimulation and branching bisimulation [21, 5]. Our transition systems are labeled with actions from a given set Act. The invisible action τ is a member of Act.

Definition 1 (LTS) A labeled transition system (LTS) is a triple (S, \rightarrow, s^0), consisting of a set of states S, transitions $\rightarrow \subseteq S \times \text{Act} \times S$ and an initial state $s^0 \in S$.

We write $s \xrightarrow{a} t$ for $(s, a, t) \in \rightarrow$, and use \xrightarrow{a}^* to denote the transitive reflexive closure of \xrightarrow{a}.

Both strong and branching bisimulation can be defined in two ways. As a relation between two LTSs or as a relation on one LTS. We choose the latter.

Definition 2 (strong bisimulation) Given an LTS (S, \rightarrow, s^0). A symmetric relation $R \subseteq S \times S$ is a strong bisimulation if:

$$\forall s, t, s' \in S : \forall a \in \text{Act} : s R t \land s \xrightarrow{a} s' \Rightarrow \exists t' \in S : t \xrightarrow{a} t' \land s' R t' .$$

Definition 3 (branching bisimulation) Given an LTS (S, \rightarrow, s^0). A symmetric relation $R \subseteq S \times S$ is a branching bisimulation if:

$$\forall s, t, s' \in S : \forall a \in \text{Act} : s R t \land s \xrightarrow{a} s' \Rightarrow \left\{ (a \equiv \tau \land s' R t) \lor (\exists t', t'' \in S : t \xrightarrow{\tau}^* t' \land s R t' \land t' \xrightarrow{a} t'' \land s' R t'') \right\}$$

Two states $s, t \in S$ are branching bisimilar (denoted $s \leftrightarrow t$) if there exists a branching bisimulation R such that $s R t$.

For proving correctness, we will use a few properties:

Proposition 4 Given an LTS:

- the relation \leftrightarrow is a branching bisimulation;
- if R is a branching bisimulation then $R \subseteq \rightarrow$.

For a proof see [21].

To talk about bisimulation reduction algorithms, we need the terminology of partition refinement. Given a set S.

- A set of sets $\{S_1, \ldots, S_N\}$ is a partition of S if $S = S_1 \cup \cdots \cup S_N$ and $\forall i \neq j : S_i \cap S_j = \emptyset$. Each set S_i is referred to as a block and must be non-empty.
- A partition $\{S_1, \ldots, S_N\}$ is a refinement of a partition $\{S'_1, \ldots, S'_M\}$ if $\forall i \exists j : S_i \subseteq S'_j$.
- Any partition $\{S_1, \ldots, S_N\}$ can be represented with an identity function $ID : S \rightarrow \mathbb{N}$, defined as $ID(s) = i$, if $s \in S_i$.

2.2 Signature Refinement

We continue with the previously published variant of signature refinement. Because many results are correct for finite LTSs only, we assume that both Act and all LTSs are finite for the remainder of the paper.

The signature of a state is computed with respect to a partition. Intuitively, the signature of a state is the set of possible moves (actions) that are possible in a state with respect to the partition (represented by a number). Formally:

Definition 5

- The set of signatures Sig is the set of finite subsets of $\text{Act} \times \mathbb{N}$.
- A partition π of an LTS (S, \rightarrow, s^0) is a function $\pi : S \rightarrow \mathbb{N}$.
- A signature function is a function $\text{sig} : (S \rightarrow \mathbb{N}) \times S \rightarrow \text{Sig}$, such that for all isomorphisms $\phi : \mathbb{N} \rightarrow \mathbb{N}$ and all partitions π:

$$\forall s \in S : \text{sig}(\phi \circ \pi, s) = \{(a, \phi(n)) \mid (a, n) \in \text{sig}(\pi, s)\}$$

The last clause is to ensure that the equality on signatures is independent of how numbers are chosen to represent partitions. This is important because we want to do a refinement process, where based on a partition, we compute signatures, which we turn into a partition, for which we compute signatures, etc. until the partition is stable. This requires translating signatures (or better pairs of previous partition numbers and signatures) to integers, which we do by means of given isomorphisms:

$$h_1, h_2, \cdots : \mathbb{N} \times \text{Sig} \rightarrow \mathbb{N}.$$

These isomorphisms exist due to the fact that signatures are finite, which implies that the set of signatures is countable. The actual refinement process works as follows:

- Given an initial partition π_0 of S.
- Given a signature function sig.
- Define $\pi_{i+1}(s) = h_{i+1}(\pi_i(s), \text{sig}(\pi_i, s))$
- Define the relation $\pi_i \subseteq S \times S$ as $s \pi_i t$, if $\pi_i(s) = \pi_i(t)$.
- There exists $N \in \mathbb{N}$ such that the relation $\pi_N = \pi_{N+1}$. Define $\pi_0^{\text{sig}} = \pi_N$.

Note that although the definitions of the functions π_{i+1} depend on the choice of the isomorphisms h_{i+1}, the relations π_i will be the same regardless of the choice of h_{i+1}, due to the third clause of Definition 5. This definition is turned into an algorithm by starting with π_i for $i = 0$, and computing π_{i+1} from π_i until the partition is stable ($\pi_{i+1} \equiv \pi_i$).

For the computed refinement to make sense, we need notions of signatures that correspond to meaningful equivalences. For example, the signatures of a state according to strong bisimulation and branching bisimulation are
Definition 6 (classic signatures)
\[
\begin{align*}
\text{sig}_a(\pi, s) &= \{(a, \pi(t)) \mid s \xrightarrow{a} t\} \\
\text{sig}_b(\pi, s) &= \{(a, \pi(t)) \mid s \xrightarrow{a} t, \pi(s) = \pi(s_i) \land (a \neq \tau \lor \pi(s) \neq \pi(t))\}
\end{align*}
\]

The signature of a state says which equivalence classes are reachable from the state by performing an action. For example in strong bisimulation, if there is an \(a\) step from a state \(s\) to a state \(t\) then the equivalence class of \(t\) is reachable by means of an \(a\) step form \(s\) which is expressed by putting the pair \((a, \pi(t))\) in the signature of \(s\).

The case for branching bisimulation is more complicated. The set of actions includes the invisible action \(\tau\). The intent of this label is that whatever happens is unimportant. Thus \(\tau\) steps are ignored, except if they change the branching behaviour. An ignored \(\tau\) step is called silent. More formally a \(\tau\) step is silent with respect to a partition if it is between states in the same equivalence class.

See [8] and [7] for more explanation.

2.3 Inductive signatures for strong bisimulation

In the classical definition of the strong bisimulation signature, the signatures depend on the previous partition only. One may wonder if in some cases the current partition can be used. The answer is yes. If for each label you consistently use the old partition or consistently use the new partition then it still works. Of course if we use the current partition then we must ensure that all signatures are well defined. This is ensured if the subgraph of edges for which we use the current partition is acyclic. This is guaranteed if we have a well-founded partition of the set of actions:

Effectively, we assume a partition \(A?, A>\) of the set of actions, such that the relation \(\{(s, t) \mid s \xrightarrow{a} t \land a \in A>_\}\) is well-founded.

Definition 7 A pair \((A?, A>\) is a well founded partition of \(\text{Act}\) for an LTS \((S, \rightarrow, s^0)\) if \(A? \cap A> = \emptyset, A? \cup A> = \text{Act}\) and the LTS is \(A>\) cycle free. The order \(\succ\subseteq S \times S\) is defined by \(\succ (\cup_{a \in A>} \xrightarrow{a})^+\).

Based on the well-founded order \(\succ\) we can give inductive definitions and proofs. For example, we can define inductive strong bisimulation signatures:

Definition 8 (inductive strong bisimulation) Given an LTS \((S, \rightarrow, s^0)\), a well founded partition \((A?, A>\) for it, an initial partition function \(\pi_0 : S \rightarrow \mathbb{N}\) and isomorphisms \(h_1, h_2, \cdots : \mathbb{N} \times \text{Sig} \rightarrow \mathbb{N}\). Define
\[
\begin{align*}
\text{sig}_{i+1}(s) &= \{(a, \pi_i(t)) \mid s \xrightarrow{a} t \land a \in A?\} \cup \{(a, \pi_{i+1}(t)) \mid s \xrightarrow{a} t \land a \in A>\} \\
\pi_{i+1}(s) &= h_{i+1}(\pi_i(s), \text{sig}_{i+1}(s))
\end{align*}
\]

Note that \(\text{sig}_{i+1}(s)\) is defined inductively in terms of any \(\pi_i\)-values, and only \(\pi_{i+1}\) values of states that are smaller in \(\succ\). To show how the definition works and how the choice of the partition influences performance, we continue with an example.

Example 9 Consider the following LTS:

![LTS Diagram](image-url)
If we take \(A_\succ := \{a\} \), and set \(\pi_0(s) := 0 \) for all states, we get the following run:

\[
\begin{align*}
sig_1(5) & := \{(b, 0)\} \quad \pi_1(5) = 1 \\
sig_1(4) & := \{(b, 0), (a, 1)\} \quad \pi_1(4) = 2 \\
sig_1(3) & := \{(a, 2)\} \quad \pi_1(3) = 3 \\
sig_1(2) & := \{(b, 0), (a, 3)\} \quad \pi_1(2) = 4 \\
sig_1(1) & := \{(b, 0), (a, 4)\} \quad \pi_1(1) = 5 \\
sig_1(0) & := \{(a, 5)\} \quad \pi_1(0) = 6 \\
\end{align*}
\]

Note that every state got a different signature, so in this case we reach the final partition in one round. Also note that the order of computation was completely fixed, because the label \(a \) imposes a total order on the states.

Next, consider the same example, but let \(A_\succ = \{b\} \). Note that this is also terminating. Again, we take \(\pi_0(s) = 0 \) for any state \(s \).

\[
\begin{align*}
sig_2(0) & := \{(a, 0)\} \quad \pi_2(0) = 5 \\
sig_2(1) & := \{(a, 0), (b, 1)\} \quad \pi_2(1) = 6 \\
sig_2(2) & := \{(a, 0), (b, 2)\} \quad \pi_2(2) = 8 \\
sig_2(3) & := \{(a, 2)\} \quad \pi_2(3) = 9 \\
sig_2(4) & := \{(a, 0), (b, 4)\} \quad \pi_2(4) = 11 \\
sig_2(5) & := \{(a, 0), (b, 5)\} \quad \pi_2(5) = 12 \\
sig_2(6) & := \{(a, 0), (b, 6)\} \quad \pi_2(6) = 13 \\
sig_2(7) & := \{(a, 2), (b, 7)\} \quad \pi_2(7) = 14 \\
sig_2(8) & := \{(a, 6)\} \quad \pi_2(8) = 15 \\
sig_2(9) & := \{(a, 0), (b, 10)\} \quad \pi_2(9) = 17 \\
sig_2(10) & := \{(a, 0), (b, 11)\} \quad \pi_2(10) = 18 \\
sig_2(11) & := \{(a, 5), (b, 12)\} \quad \pi_2(11) = 20 \\
sig_2(12) & := \{(a, 5), (b, 13)\} \quad \pi_2(12) = 21 \\
\end{align*}
\]

Note that this time we need three iterations, but there is some room for parallel computation, because the signature of 0 and 3 can be computed independently, because they have no \(b \) successors.

2.4 Inductive signatures for branching bisimulation

In the splitting procedure of the Groote-Vaandrager algorithm, whenever a state has one or more \(\tau \) successors inside the block that is being split, the algorithm tests if the behavior of one of those \(\tau \) successors includes all of the behavior of the state. If such a successor exists, then the state is put in the same block as that successor. Because of this splitting procedure the graph has to be \(\tau \)-cycle free. A similar effect can be achieved by exploiting \(\tau \)-cycle freeness when we define the branching signature. Thus, we assume that \(\tau \in A_\succ \) for all partitions \(\langle A_\tau, A_\succ \rangle \).

The inductive branching signature is computed in two steps. First, the pre-signature is computed, which consists of all transitions to all successors, including \(\tau \)-steps to possibly equivalent states. Second, we look for a \(\tau \)-successor in the same block of the previous partition which contains all pre behavior except the \(\tau \) step to that successor. If such a successor is found then the signature is the signature of that successor, otherwise the signature is the pre-signature:

Definition 10 (inductive branching bisimulation) Given an LTS \((S, \rightarrow, s^0) \), a well founded partition \(\langle A_\tau, A_\succ \rangle \) for \(\tau \in A_\succ \) and an initial partition function \(\pi_0 : S \rightarrow \mathbb{N} \). Define

\[
\begin{align*}
pre_{i+1}(s) & := \{(a, \pi_i(t)) \mid s \xrightarrow{a} t \land a \in A_\tau\} \cup \{(a, \pi_{i+1}(t)) \mid s \xrightarrow{a} t \land a \in A_\succ\} \\
sig_{i+1}(s) & := \begin{cases} \text{if there exists a } t \text{ with } s \xrightarrow{a} t, \pi_i(s) = \pi_i(t) \text{ and } pre_{i+1}(s) \subseteq sig_{i+1}(t) \cup \{(\tau, \pi_{i+1}(t))\} & \text{then } sig_{i+1}(t) \\
& \text{else } pre_{i+1}(s) \end{cases} \\
\pi_{i+1}(s) & := h_{i+1}(\pi_i(s), sig_{i+1}(s))
\end{align*}
\]
Proof. We prove both parts at once by induction on \(\sigma \). Given a state \(s \), signature \(\sigma \) in lock step with the observation that if a signature \(\sigma \) contains a pair \((a,n)\), then any state with signature \(\sigma \) has a path of silent \(\tau \) steps to a state where an \(a \) step is possible to a final state in partition \(n \).

To avoid unnecessary case distinctions between \(a \in A_? \) and \(a \in A_\triangleright \), we introduce the notation
\[
\hat{a} \overset{\text{def}}{=} \begin{cases}
0 & \text{if } a \in A_? \\
1 & \text{if } a \in A_\triangleright
\end{cases}
\]
This allows us to abbreviate “\(\pi_i(s) \) if \(a \in A_? \) and \(\pi_{i+1}(s) \) if \(a \in A_\triangleright \)” by \(\pi_{i+\hat{a}}(s) \).

Proposition 11 For all states \(s \):

1. If there exist \(t_1, t_2 \) with \(s \xrightarrow{\tau} t_1, s \xrightarrow{\tau} t_2, \pi_i(s) = \pi_i(t_1) = \pi_i(t_2), \text{pre}_{i+1}(s) \subseteq \text{sig}_{i+1}(t_1) \cup \{(\tau, \pi_{i+1}(t_1))\} \) and \(\text{pre}_{i+1}(s) \subseteq \text{sig}_{i+1}(t_2) \cup \{(\tau, \pi_{i+1}(t_2))\} \) then \(\text{sig}_{i+1}(t_1) = \text{sig}_{i+1}(t_2) \).

2. If \((a,n) \in \text{sig}_{i+1}(s)\) then \(\exists s_1, \ldots, s_m, t : s \xrightarrow{\tau} s_1 \cdots \xrightarrow{\tau} s_m \overset{a}{\rightarrow} t \land \pi_i(s) = \pi_i(s_j) \land n = \pi_{i+\hat{a}}(t) \).

Proof. We prove both parts at once by induction on \(\tau^* \).

Given a state \(s \), we prove part 1 by contradiction. Suppose that \(\text{sig}_{i+1}(t_1) \neq \text{sig}_{i+1}(t_2) \). Then
\[
\{(\tau, \pi_{i+1}(t_1)), (\tau, \pi_{i+1}(t_2))\} \subseteq \text{pre}_{i+1}(s)
\]
and therefore:
\[
(\tau, \pi_{i+1}(t_1)) \in \text{sig}_{i+1}(t_2) \text{ and } (\tau, \pi_{i+1}(t_2)) \in \text{sig}_{i+1}(t_1)
\]
Let \(s_1 = t_1 \). Because \(s \xrightarrow{\tau} t_1 \), the induction hypothesis applies to \(t_1 \). Thus by applying part 2, there exists a state \(s'_1 \), such that \(s_1 \xrightarrow{\tau^+} s'_1 \) and \(\pi_{i+1}(s'_1) = \text{pre}_{i+1}(t_2) \). This implies that \(\text{sig}_{i+1}(s'_1) = \text{sig}_{i+1}(t_2) \). So we can find \(s_2 \), such that \(s'_1 \xrightarrow{\tau^+} s_2 \) and \(\pi_{i+1}(s_2) = \pi_{i+1}(t_1) \). In other words we get an infinite sequence
\[
s_1 \xrightarrow{\tau^+} s_1 \xrightarrow{\tau^+} s_2 \xrightarrow{\tau^+} \ldots
\]
In a finite state space this implies the existence of a \(\tau \) cycle. Contradiction.

Part 2 is proven by case distinction. We have two cases:

\(\text{sig}_{i+1}(s) = \text{pre}_{i+1}(s) \) if \((a,n) \in \text{pre}_{i+1}(s)\) then for some \(t : s \overset{a}{\rightarrow} t \) and \(n = \pi_{i+\hat{a}}(t) \).

\(s \xrightarrow{\tau} t \land \pi_i(s) = \pi_i(t) \land \text{sig}_{i+1}(s) = \text{sig}_{i+1}(t) \) By induction hypothesis, we have a sequence \(t \xrightarrow{\tau} t_1 \xrightarrow{\tau} \cdots t_m \overset{a}{\rightarrow} t' \) satisfying the requirement for \(t \). Which means that the requirement for \(s \) is satisfied by
\[
s \xrightarrow{\tau} t \xrightarrow{\tau} t_1 \xrightarrow{\tau} \cdots t_m \overset{a}{\rightarrow} t'
\]

\(\square \)

We will show how the new definition works and is different from the approach of [7], by means of an example:

Example 12 Consider the following three examples. We have only drawn the nodes of the graphs which are relevant. Let \(\pi_0(s) = 0 \) for all \(s \) and \(\pi_i(s) = 0 \) for all nodes \(s \) which have been omitted.
Let $A_\geq = \{\tau\}$. Then for the left-most LTS on the left, we get:

\[
\begin{align*}
\text{pre}_1(2) & := \{(a,0), (b,0), (c,0)\} & \pi_1(2) &= 1 \\
\text{sig}_1(2) & := \{(a,0), (b,0), (c,0)\} & \pi_1(3) &= 2 \\
\text{pre}_1(1) & := \{(a,0), (b,0), (\tau,1)\} & \pi_1(1) &= 1 \\
\text{sig}_1(1) & := \{(a,0), (b,0), (c,0)\} & \pi_1(0) &= 1 \\
\text{pre}_1(0) & := \{(a,0), (\tau,1)\} & \pi_1(0) &= 1
\end{align*}
\]

Note that $|\text{dom}(\text{sig}_1)| = |\text{dom}(\text{sig}_0)| = 1$, so sig is stable, and all \(\tau\)-steps are silent.

For the middle LTS, we obtain:

\[
\begin{align*}
\text{pre}_1(2) & := \{(a,0), (b,0), (c,0)\} & \pi_1(3) &= 2 \\
\text{sig}_1(2) & := \{(a,0), (b,0), (c,0)\} & \pi_1(2) &= 1 \\
\text{pre}_1(1) & := \{(a,0), (b,0)\} & \pi_1(1) &= 2 \\
\text{sig}_1(1) & := \{(a,0), (b,0)\} & \pi_1(0) &= 1 \\
\text{pre}_1(0) & := \{(a,0), (\tau,1), (\tau,2)\} & \pi_1(0) &= 1 \\
\text{sig}_1(0) & := \{(a,0), (\tau,1), (\tau,2)\} & \pi_1(0) &= 3
\end{align*}
\]

Note that $|\text{dom}(\text{sig}_1)| = 3$, which cannot increase, so again sig is stable. In this case, none of the \(\tau\)-steps is silent.

For the LTS on the right, we get

\[
\begin{align*}
\text{sig}_1(2) & := \{(a,0)\} & \pi_1(2) &= 1 & \text{sig}_1(3) & := \{(b,0)\} & \pi_1(3) &= 2 \\
\text{sig}_1(1) & := \{(\tau,1), (\tau,2)\} & \pi_1(1) &= 3 & \text{sig}_1(0) & := \{(a,0), (b,0), (\tau,3)\} & \pi_1(0) &= 4
\end{align*}
\]

Already after one iteration it is detected that none of the \(\tau\)-steps is silent. In the original definition in \cite{7}, this would be detected later, as the following example shows.

\[
\begin{align*}
\text{sig}_b(2) & := \{(a,0)\} & \pi_2(2) &= 1 & \text{sig}_b(3) & := \{(b,0)\} & \pi_2(3) &= 2 \\
\text{sig}_b(1) & := \{(a,0), (b,0)\} & \pi_1(1) &= 3 & \text{sig}_b(0) & := \{(a,0), (b,0)\} & \pi_1(0) &= 3 \\
\text{sig}_b(2) & := \{(a,0)\} & \pi_2(2) &= 1 & \text{sig}_b(3) & := \{(b,0)\} & \pi_2(3) &= 2 \\
\text{sig}_b(1) & := \{(\tau,1), (\tau,2)\} & \pi_2(1) &= 4 & \text{sig}_b(0) & := \{(a,0), (b,0), (\tau,1), (\tau,2)\} & \pi_2(0) &= 5
\end{align*}
\]

Note the two differences between inductive and classic signatures. First, the fact that $0 \xrightarrow{} 1$ is not silent is detected in the first iteration by inductive and the second by classic signatures. Second, in the inductive case the size of the signature is limited by the number of outgoing transitions in the classic case it is not.
2.5 Correctness

We use the same proof technique as in previous work. That is, we prove that bisimilar states are always in the same block and that if a \(\pi_i \) partition is stable (\(\pi_i \) and \(\pi_{i+1} \) denote the same relation) then \(\pi_i \) is a bisimulation. Thus because \(\leftrightarrow \) is the coarsest bisimulation, we must have that \(\pi_i \) coincides with \(\leftrightarrow \).

In this section we work on a given LTS \((S, \rightarrow, s^0) \) and well-founded partition \((A_?, A_> \) , with \(\tau \in A_> \). We consider inductive branching bisimulation and we let \(s \leftrightarrow t \) denote \(\pi_i(s) = \pi_i(t) \).

One of the properties of a \(\tau \)-cycle free LTS is that given a state one can always follow \(\tau \) steps to bisimilar states, until a state is found that has no such step. These states are called canonical:

Definition 13 A state \(s \) is canonical (denoted \(s \downarrow \)) if \(\neg \exists s' : s \not\xrightarrow{} s' \land s \leftrightarrow s' \).

Canonical states have the important property that all visible behavior is present as an immediate step rather than as a sequence of one or more invisible steps followed by a visible step.

Lemma 14 If \(\leftrightarrow \subseteq \rightarrow \) then for all states \(s, t \) we have \((s \leftrightarrow t \land t \downarrow) \Rightarrow s \leftrightarrow_{i+1} t \)

To prove this, we need two properties.

Proposition 15 For all states \(s, t \), we have

1. \(\text{pre}_{i+1}(s) \subseteq \text{sig}_{i+1}(s) \cup \{(\tau, \pi_{i+1}(s))\} \).
2. \(\text{pre}_{i+1}(s) \subseteq \text{sig}_{i+1}(s) \cup \{(\tau, \pi_{i+1}(s))\} \).

1. \(\text{pre}_{i+1}(s) \subseteq \text{sig}_{i+1}(s) \cup \{(\tau, \pi_{i+1}(s))\} \).

2. if \(\text{pre}_{i+1}(s) = \text{pre}_{i+1}(t) \) then \(\text{sig}_{i+1}(s) = \text{sig}_{i+1}(t) \).

Proof. Both parts are proven by case distinction.

\(\exists s' : s \not\xrightarrow{} s' \land \text{pre}_{i+1}(s) \subseteq \text{sig}_{i+1}(s') \cup \{(\tau, \pi_{i+1}(s'))\} \)

By definition we have \(\text{sig}_{i+1}(s) = \text{sig}_{i+1}(s') \).

Thus, part 1 is trivial.

It also means that \((\tau, \pi_{i+1}(s')) \in \text{pre}_{i+1}(s) \). So \((\tau, \pi_{i+1}(s')) \in \text{pre}_{i+1}(t) \). So for some \(t' \), we have \(t \not\xrightarrow{} t' \) and \(\pi_{i+1}(t') = \pi_{i+1}(s') \). This implies that \(\text{sig}_{i+1}(t') = \text{sig}_{i+1}(s') \). Finally, it follows that \(\text{sig}_{i+1}(t) = \text{sig}_{i+1}(s) \).

otherwise By definition we have \(\text{sig}_{i+1}(s) = \text{pre}_{i+1}(s) \). Thus, part 1 is trivial.

Due to symmetry we have have that \(\text{sig}_{i+1}(t) = \text{pre}_{i+1}(t) \) as well.

\(\square \)

Proof of Lemma 14. By induction on the order \(\geq \) on pairs of states, defined as \((s, t) \geq (s', t') \) iff \(s \geq s' \land t \geq t' \).

First, we prove that

\(\text{pre}_{i+1}(s) \subseteq \text{pre}_{i+1}(t) \cup \{(\tau, \pi_{i+1}(t))\} \) \hspace{1cm} (1)

The elements of \(\text{pre}_{i+1}(s) \) fit one of two cases:

- (a, \(\pi_i(s') \)), for \(s \not\xrightarrow{} s' \land a \in A_\tau \): Because \(s \leftrightarrow t \) and \(a \neq \tau \), we have \(t \not\xrightarrow{} t'' \land t'' \not\xrightarrow{} t' \) with \(s \leftrightarrow t'' \land s' \leftrightarrow t' \). Because \(t \downarrow \), we have \(t'' = t \). By assumption \(s' \leftrightarrow t' \) and thus \((a, \pi_i(s')) \in \text{pre}_{i+1}(t) \).
Proof. Suppose that We distinguish two cases:

- \(t \xrightarrow{a} t' \) with \(s' \xrightarrow{} t' \): By induction hypothesis \(s' \xrightarrow{i+1} t' \) and thus \((a, h(sig_{i+1}(s'))) \in pre_{i+1}(t) \).
- \(t \xrightarrow{i+1} t'' \xrightarrow{} t' \) with \(s \xrightarrow{} t'' \land s' \xrightarrow{} t' \): Impossible due to \(l_i \).
- \(a = \tau \) and \(s' \xrightarrow{} t \): By induction hypothesis \(s' \xrightarrow{i+1} t \), so \((a, \pi_{i+1}(s')) = (\tau, \pi_{i+1}(t))\).

This completes the proof of (1). Now, we distinguish on whether \(s \) is canonical or not.

- \(s \downarrow \): In this case we claim \(pre_{i+1}(s) = pre_{i+1}(t) \). Each of the inclusion is proven similar to the proof of (1) above. This implies \(sig_{i+1}(s) = sig_{i+1}(t) \) and thus \(s \xrightarrow{} t \).
- \(s \not\xrightarrow{} s' \land s \xrightarrow{} s' \): By induction hypothesis \(sig_{i+1}(s') = sig_{i+1}(t) \). Thus \(pre_{i+1}(s) \subseteq pre_{i+1}(t) \cup \{(\tau, \pi_{i+1}(t))\} \subseteq sig_{i+1}(t) \cup \{(\tau, \pi_{i+1}(t))\} \).

Thus \(sig_{i+1}(s) = sig_{i+1}(s') \).

\[\square \]

Lemma 16 If for all \(s, t: s \xrightarrow{i} t \iff s \xrightarrow{i+1} t \) then \(\xrightarrow{} \) is a branching bisimulation.

Proof. Suppose that \(s \xrightarrow{i} t \) and \(s \xrightarrow{a} s' \).

We distinguish two cases:

- \(a = \tau \land s \xrightarrow{i} s' \): This implies \(s' \xrightarrow{} t \).
- \(a \neq \tau \lor s \not\xrightarrow{i} s' \): This implies \((a, \pi_{i+1}(s')) \in sig_{i+1}(s) \). So \((a, \pi_{i+1}(s')) \in sig_{i+1}(t) \). If \((a, \pi_{i+1}(s')) \in pre_{i+1}(t) \) then \(t \xrightarrow{a} t' \) with \(s' \xrightarrow{i} t' \). Otherwise, there must be a \(t'' \), such that \(t \xrightarrow{a} t'' \) and \(sig_{i+1}(t) = sig_{i+1}(t'') \). By repeating the case distinction we can construct \(t \xrightarrow{\tau} t'' \xrightarrow{} t' \) with \(s \xrightarrow{i} t'' \land s' \xrightarrow{i} t' \).

\[\square \]

3 Distributed Algorithm

In this section, we present a distributed algorithm for computing the branching bisimulation equivalence relation.

The input to the algorithm is an LTS \((S, \rightarrow, s^0)\), a well founded partition \(\langle A_?, A_> \rangle \), and a function \(owner : S \rightarrow \{1, \cdots, W\} \) where \(W \) is the number of workers. The owner function is a given distribution of states among the workers.

The given isomorphisms of the theory are replaced by global hash tables in the implementation. Each worker stores an equal part of this global hash table. A second owner function \(owner : ID \times Sig \rightarrow \{1, \cdots, W\} \) stores the worker where the (new) ID of the pair (oldID,signature) is stored.

In the actual implementation states and edges are numbered entities. Since the theory assumes that edges are triples, we need to introduce some new notation. Moreover, we have to distinguish which worker owns which state and which edge, so we need some notation for that as well.
The functions src, dst and lbl provide access to the source state, destination state and label of an edge, respectively:

$$\forall e \equiv (s, a, t) \in \rightarrow : src(e) = s, lbl(e) = a \text{ and } dst(e) = t.$$

Each worker owns a set of states and needs to know the outgoing τ edges, A_τ edges and $A_>$ edges:

$$S_w = \{ s \in S \mid owner(s) = w \} \quad E_w^\tau = \{ e \in \rightarrow \mid src(e) \in S_w \land lbl(e) = \tau \}$$

$$E_w^\rightarrow = \{ e \in \rightarrow \mid src(e) \in S_w \land lbl(e) \in A_\tau \} \quad E_w^\rightarrow = \{ e \in \rightarrow \mid src(e) \in S_w \land lbl(e) \in A_\rightarrow \}$$

Finally, we need the definitions of successor and predecessor edges of a state:

$$\text{succ}(s) = \{ e \mid src(e) = s \} \quad \text{pred}(s) = \{ e \mid dst(e) = s \}$$

Each worker stores both ingoing and outgoing edges of the states it owns in a way that allows it to quickly enumerate the successors and predecessors of every state.

Next, we will explain our algorithm for distributed computation of inductive signatures. Pseudo
code of the main loop can be found in Table 1. It leaves out the details of the signature computation and global hash table. These details can be found in table 2. The algorithm works in a few steps:

1. Put the initial partition (every state is equivalent) in the current partition and start the first iteration. (See table 1, lines 4-5.)

2. Initialize the data structure needed in each iteration. That is, set the values of the successor partition IDs and signatures to undefined, clear the global hash table, clear the signature and new ID queues and put all states in the old ID queue. (See table 1, lines 7-11.)

3. If a state is in the old ID queue it means that the ID with respect to the previous partition has to be forwarded to the predecessors. This is done by sending a message for every incoming A_τ or τ edge. (See table 1, lines 13-15.) If such a message is received then the old ID is stored and if necessary the state is put in the signature queue. (See table 1, line 16.)

4. If a state is in the signature queue then all information needed to compute the signature is present. Once the signature has been computed it is sent to all τ predecessors and a request is sent to the global hash table to resolve the ID of the (oldID, signature) pair. (See table 1, lines 17-21.) If a signature set request is received then the signature is set and if necessary the state is put in the signature queue. (See table 1, line 22.) If a hash table request is received then the lookup is made and the reply is sent immediately. (See table 1, lines 23-24.) Upon receiving the reply, the state is put in the new ID queue. (See table 1, line 25.)

5. If a state is in the new ID queue then the ID in the current partition is ready to be sent to all A_\succ predecessors. (See table 1, lines 26-28.) Receiving such a message leads to storing the result and possibly inserting the state in the signature queue. (See table 1, line 29.)

6. As soon as the new partition ID of every state is known everywhere, the message loop can exit. Note that this requires a simple form of distributed termination detection.

7. By adding up the share of every partition ID hash table, we compute the number of partitions and we repeat the loop if necessary.

As described above, messages from the old queue, signature queue and new queue are dealt with in parallel until finished. The actual implementation deals with these messages in waves: first the entire old queue is dealt with then the signature queue and new queue are emptied globally in sub iterations.

Before we discuss the experiments with our prototype implementation, we first discuss the time, memory and message complexity. For this analysis we assume that the fan out of every state is bounded. We assume an LTS with N states and M transitions.

The time needed for the algorithm is the number of iterations times the cost of each iteration. The worst case number of iterations is the number of states N. (E.g. for the LTS $\{0, \ldots, N-1\}, i \xrightarrow{a} i + 1 \mod N \cup \{0\} \xrightarrow{b} 0, 0).$ In each iteration, for each state we must compute the signature and insert it in the global hash table. Due to the fact that the fan out is constant, this requires $O(N)$ time and messages. For each edge, we may have to send the old ID, the new ID and the signature. This requires $O(M)$ time and messages. Overall, the worst case time complexity is $O(N \cdot N + M)$.

The number of times one cannot avoid waiting for a message in each iteration depends on the length of the longest A_\succ path in the graph: computation has to start at the last node and work up to the first, incurring three message latencies at each step.
Table 2: Subroutines for inductive branching minimization.

```plaintext
proc check_ready(s)
    for e in succ(s) do
        if dest_id[e] = ⊥ or lbl(e) = τ ∧ dest_sig[e] = ⊥ then return end
    end
    add s to sig_queue
end

set compute_sig(s)
    pre := ∅
    for e in succ(s) ∩ E_o do pre := pre ⋃ { (lbl(e), dst_old[e]) } end
    for e in succ(s) ∩ E_w do pre := pre ⋃ { (lbl(e), dst_new[e]) } end
    for e in succ(s) with lbl(e) = τ and dest_id[s] = dst_old[e] do
        if pre ⊆ dest_sig[e] ⋃ { (τ, dst_new[e]) } then return dest_sig[e] end
    end
    return pre
end

int index_count := 0; hashtable index_table := ∅
proc indexed_set_clear() index_count := 0; index_table := ∅ end
int indexed_set_put(pair)
    if index_table[pair] = ⊥ then
        index_table[pair] := index_count * workers + me; index_count++ end
    return index_table[pair]
end
```

The memory needed by the algorithm to store the LTS and the signatures is linear in the number of states and transitions: $O(N + M)$. (This is a difference to the old algorithm where even if the fan out was bounded, the size of many signatures could be in the order of the number of edges.) Provided that the owner functions work well, the memory use is evenly distributed across all workers. The memory needed for message buffering can be kept constant, because each step that involves sending more than one message is a step where a state has to be taken from a queue. Blocking these steps if the number of messages in the system is above a threshold limits the number of messages to that threshold. Overall, the worst case memory complexity of the algorithm is $O(N + M)$.

The worst case memory is also the expected memory complexity, since we expect to keep the LTS in memory. The expected time complexity is much lower than the worst case: The expected number of iterations and the expected length of the longest $A_≥$ path are orders of magnitude less than the number of states.

4 Experimental Evaluation

To study the performance of the implementation of the new algorithm, we use four models. We perform two tests on these models. First, we compare with existing branching bisimulation reduction tools. Second, we test how well the new implementation scales in the number of computes nodes and cores used per node. In addition, we briefly mention work in progress on inductive strong bisimulation.
The models that we use in our experiments are:

- **lift6**: A distributed lift system [13]. This model describes a system that can lift large vehicles by using one leg for each wheel of the vehicle. These legs are connected in a ring topology. The instance we used has 6 legs.

- **swp6**: A version of the sliding window protocol [1]. It has 2 data elements, the channels can contain at most one element and the window size is 6.

- **fr53**: A model of Franklin’s leader election protocol for anonymous processes along a bidirectional ring of asynchronous channels, which terminates with probability one [2, 11]. We chose an instance with 5 nodes and 3 identities.

- **1394fin**: Model of the physical layer service of the 1394 or firewire protocol and also the link layer protocol entities [16, 19]. We use an instance with 3 links and 1 data element.

The sizes of these models, in their original, cycle eliminated and branching reduced forms are shown in Table 3. This table also show the number of iterations needed by classic branching (c.b.), inductive branching (i.b.), classic strong (s.c.), inductive strong (i.s.) and the length of the longest τ path (p). Note that in two cases (lift6 and 1394fin) the number of iterations needed by the inductive branching algorithm is less than the number needed by the classical algorithm. Also note that the number of iterations needed for inductive strong bisimulation is always a lot less. It will be interesting to see, if we get similar results if we use real input graphs and $A>$, instead of τ-cycle reduced graphs and $A>$ = \{\tau\}.

In Table 4, we show the results of the comparison. The tools in the comparison are

- **bcg min**: The reduction tool from the CADP toolset [12]. Version 1.7 from the 2007q beta release, 64 bit installation. This implements the algorithm from [14], for which first the τ-cycles must be eliminated (ce).

- **ltsmin sequential**: The reduction tool which is released as part of the μCRL toolset [6]. We additionally implemented a sequential version of the inductive branching bisimulation algorithm in this tool.

- **ltsmin distributed**: A distributed implementation, which contains the classic distributed branching bisimulation reduction algorithm from [7], and the newly implemented inductive branching bisimulation reduction algorithm.

For **bcg min**, we show the total time needed for reading the input, reducing and writing the output. For **ltsmin sequential**, we show both the total time and the time needed for reduction. For **ltsmin distributed classic**, we show the reduction time (wall clock time). For **ltsmin distributed inductive**, we show the time for sequential cycle elimination and the wall clock time of distributed
reduction. In all cases we additionally show the total memory requirements in MB. The tests were performed on a dual quad core Xeon 3GHz machine with 48GB memory.

Several conclusions can be drawn from the results. By looking at the results for sequential ltsmin, we can conclude that inductive signatures are better than classic signatures. By looking at the times needed for fr53 it is obvious that this implementation of cycle elimination in ltsmin should be improved.

We can also conclude that on these cases, sequential ltsmin uses much less memory than bcg_min for branching bisimulation. With the exception of fr53, sequential ltsmin is also much faster than bcg_min. Part of the reason is that ltsmin is 64 bit optimized and bcg_min is not. (The performance of sequential ltsmin is identical when compiled 32 or 64 bit. The 64 bit version of bcg_min uses twice as much memory and 33% more time than the 32 bit version.)

It is also clear that the distributed tool is much more expensive in time and memory than the sequential tool. The extra cost in memory is easily explained. In ltsmin, signature ID’s are stored per state only. In ltsmin they have to be stored per state and per transition. In ltsmin the LTS itself takes 4 bytes per state and 8 bytes per transition (label and state). In ltsmin it takes 8 bytes per state and 24 bytes per transition (label, owner and state for ingoing and outgoing edges). This mean that ltsmin has to work through roughly 3 times as much data in each iteration, which might take up to 3 times as much time. Frequent synchronization between the workers and having to send and receive information that in ltsmin can simply be accessed is expected to account for a lot of time.

To test how well the algorithms scale, we first eliminated the \(\tau \) cycles from the four examples and then ran the inductive reduction on 1, 2, 4 and 8 nodes with 1, 2, 4 and 8 cores per node. For these tests, we used a cluster with dual quad core Xeon 2GHz, 8GB memory machines connected with gigabit ethernet. The times needed for the reduction can be seen in Fig. 1.

The graphs have been ordered from the smallest to the largest problem. It is interesting to see that for the smallest problem (swp6), the first time that more workers leads to more rather than less time is using 2 nodes, 2 cores per node. For the next two (lift6,1394fin) this happens at 2 nodes, 4 cores per node and for the largest (franklin) at 4 nodes, 4 cores per node.

It is also clear that using 8 cores instead of 4 is problematic. For 1 and 2 nodes the performance increase is small and for 4 and 8 nodes, the performance actually gets worse. Taken together with the huge difference in performance between the sequential and the distributed tool this leads to the (unsurprising) conclusion that it would be better to change the implementation to be aware of which workers are local (allow shared memory) and which workers are remote (require message passing). We leave such a tuned heterogeneous cluster-of-multi-cores implementation for future work.
Figure 1: Distributed reduction times for inductive branching bisimulation

5 Conclusion

We have defined the notion of inductive branching signature and proven that it corresponds to branching bisimulation. We have given a distributed algorithm that computes the coarsest branching bisimulation using inductive signatures. In the experiments section, we have shown that it is possible to implement the algorithm in such a way that it scales for up to 8 workers with 1 or 2 cores.

The current prototype is good enough to show the merit of the concept of inductive signatures. However, it can be optimized in several ways. For example, the information about edges between two workers is currently stored by both the source worker and the destination worker. If both workers are on the same machine, then they could share a single instance of the data. Similarly, the algorithm uses a lot of small messages. For good performance, message combining is needed, which is currently done at the worker level, but could be done at the node level instead.

Because strong bisimulation is a special case of branching bisimulation, our algorithm can also be used for strong bisimulation. However, for branching bisimulation we can eliminate τ cycles to get a well-founded partition. For strong bisimulation, we will have to come up with a good heuristic to automatically find well-founded partitions.

As a final conclusion, we note that inductive signatures for branching bisimulation improve time and memory requirements compared to classical signatures, both in a sequential and a distributed implementation. Of course, distributed minimization can handle larger graphs that don’t fit in
the memory of a single machine. Additionally, the distributed version using 8 cores on 2 nodes consistently beats the best sequential algorithm in time.

References

