Mathematical Programs with Complementarity Constraints: Convergence Properties of a Smoothing Method

Gemayqzel Bouza
Department of Mathematics, University of Havana, Vedado, Plaza CP:10440, Havana, Cuba,
gema@matcom.uh.cu

Georg Still
Department of Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands,
g.still@math.utwente.nl

In this paper, optimization problems P with complementarity constraints are considered. Characterizations for local minimizers \bar{x} of P of Orders 1 and 2 are presented. We analyze a parametric smoothing approach for solving these programs in which P is replaced by a perturbed problem P_τ depending on a (small) parameter τ. We are interested in the convergence behavior of the feasible set $\bar{\mathcal{F}}_\tau$, and the convergence of the solutions \bar{x}_τ of P_τ for $\tau \to 0$. In particular, it is shown that, under generic assumptions, the solutions \bar{x}_τ are unique and converge to a solution \bar{x} of P with a rate $\mathcal{O}(\sqrt{\tau})$. Moreover, the convergence for the Hausdorff distance $d(\bar{\mathcal{F}}_\tau, \mathcal{F})$ between the feasible sets of P and P_τ is of order $\mathcal{O}(\sqrt{\tau})$.

Key words: mathematical programs with complementarity constraints; smoothing method; rate of convergence; genericity

MSC2000 subject classification: Primary: 90C30; secondary: 90C33, 65K05

OR/MS subject classification: Programming, complementarity

History: Received December 7, 2004; revised December 18, 2005 and May 17, 2006.

1. Introduction. This paper deals with optimization problems of the form

$$
P: \quad \min_{\bar{x}} \ f(\bar{x})$$

s.t. $g_j(\bar{x}) \geq 0, \quad j \in J := \{1, \ldots, q\}$,

$$r_i(\bar{x})s_i(\bar{x}) = 0, \quad i \in I := \{1, \ldots, m\},$$

$$r_i(\bar{x}), s_i(\bar{x}) \geq 0, \quad i \in I.$$ (1)

As usual, such a program will be called a mathematical program with complementarity constraints or a mathematical program with equilibrium constraints (MPEC). All functions f, g_j, $r_i, s_i : \mathbb{R}^n \to \mathbb{R}$ are assumed to be C^2 functions. The constraints $r_i(\bar{x})s_i(\bar{x}) = 0$, $r_i(\bar{x}), s_i(\bar{x}) \geq 0$ are called complementarity constraints.

This class of MPEC problems is a topic of intensive recent research. (See, e.g., Fukushima and Lin [4], Fukushima and Pang [5], Hu and Ralph [8], Leyffer [9], Lin and Fukushima [10], Luo et al. [11], Ralph and Wright [13], Scheel and Scholtes [14], Scholtes and Stöhr [16], and the references in these contributions.) Complementarity constraints arise in problems with equilibrium conditions (cf. Outrata et al. [12]) or as special cases in the so-called Karush-Kuhn-Tucker (KKT) approach for solving problems with a bilevel structure (see, e.g., Stein and Still [17]).

We say that at a local solution \bar{x} of P the strict complementary (SC) slackness is fulfilled if the relation

$$(SC): \quad r_i(\bar{x}) + s_i(\bar{x}) > 0, \quad \forall i \in I$$ (2)

is satisfied. The problem in MPEC is that typically the condition SC is not satisfied at a solution \bar{x} of P. It is also well known that the Mangasarian-Fromovitz constraint qualification (MFCQ) of standard finite programming (and thus the stronger Linear Independence constraint qualification [LICQ]) fails to hold at any feasible point of P (see, e.g., Chen and Florian [2]). So, to solve these complementarity constrained programs numerically, we cannot use standard software of nonlinear programming, since the standard algorithms always rely on LICQ.

To circumvent this problem the following parametric smoothing approach can be applied. Instead of P, we consider the perturbed problem

$$P_\tau: \quad \min_{\bar{x}} \ f(\bar{x})$$

s.t. $g_j(\bar{x}) \geq 0, \quad j \in J,$

$$r_i(\bar{x})s_i(\bar{x}) = \tau, \quad i \in I,$$

$$r_i(\bar{x}), s_i(\bar{x}) \geq 0, \quad i \in I,$$ (3)

where $\tau > 0$. We are interested in the convergence behavior of the feasible set $\bar{\mathcal{F}}_\tau$, and the convergence of the solutions \bar{x}_τ of P_τ for $\tau \to 0$. In particular, it is shown that, under generic assumptions, the solutions \bar{x}_τ are unique and converge to a solution \bar{x} of P with a rate $\mathcal{O}(\sqrt{\tau})$. Moreover, the convergence for the Hausdorff distance $d(\bar{\mathcal{F}}_\tau, \mathcal{F})$ between the feasible sets of P and P_τ is of order $\mathcal{O}(\sqrt{\tau})$.
where $\tau > 0$ is a small perturbation parameter. In this paper, we intend to analyze the convergence behavior of this approach.

In the following, let φ, φ_e denote the marginal values, $\mathcal{F}, \mathcal{F}_x$ the feasible sets, and $\mathcal{F}_x, \mathcal{F}$ the sets of minimizers of $P = P_0 \cap P_x$, respectively. We expect, by letting $\tau \to 0$, that a solution \bar{x}_τ of P_τ converges to a solution \bar{x} of P.

It will be shown that under natural (generic) assumptions the convergence rate for

$$\mathcal{F}_x \to \mathcal{F} \quad \text{and for} \quad \bar{x}_\tau \to \bar{x} \quad \text{is of order} \quad \Theta(\sqrt{\tau}).$$

The assumptions MPEC-LICQ, MPEC-SC, and MPEC-SOC (cf. (6), (15), (16)) will play a crucial role in the convergence analysis.

The paper is organized as follows: Section 2 illustrates the convergence behavior on some motivating examples and discusses natural regularity conditions. Section 3 reviews the genericity results in Scholtes and Stöhr [16] and presents necessary and sufficient optimality conditions for a minimizer \bar{x} of P of Orders 1 and 2 under natural assumptions. In §4, the convergence behavior of the perturbed feasible set \mathcal{F}_x is analyzed from local and global viewpoints. Finally, in the last section we prove the existence of local minimizers \bar{x}_τ of P_τ near a local minimizer \bar{x} of P and their unicity. We show that generically the rate $\|\bar{x}_\tau - \bar{x}\| = \Theta(\sqrt{\tau})$ takes place.

We introduce some notation. The distance between a point \bar{x} and a set \mathcal{F} is defined by $d(\bar{x}, \mathcal{F}) = \min\{\|x - \bar{x}\| \mid x \in \mathcal{F}\}$. We also use the notation $B_{\epsilon}(\bar{x}) = \{x \mid \|x - \bar{x}\| < \epsilon\}$ and denote its closure by $\bar{B}_{\epsilon}(\bar{x})$. The norm $\|x\|$ will always be the Euclidean norm.

In the rest of this introduction, we will discuss earlier results related to our investigations. The parametric approach (3) was used for the first time by Luo et al. [11] in connection with equilibrium constrained problems. Here, constraints $y, w = 0$ had been perturbed to $y, w = \epsilon \mu$ (cf. Luo et al. [11, p. 280]). For problems of the type (1), this smoothing method has been applied by Facchinei et al. [3], Fukushima and Pang [5], and Hu [7] (using NCP-functions). In these papers, the convergence to a B-stationary point has been established (under appropriate regularity assumptions). In Stein and Still [17], such a convergence is obtained for a similar (interior point) approach for solving semi-infinite programming problems. A referee drew our attention to the (preprint) of Ralph and Wright [13]. Here, a convergence $\|\bar{x}_\tau - \bar{x}\| \leq \Theta(\epsilon^{1/3})$ has been shown (see also Corollary 5.2).

Under an additional MPEC-SC condition, we will prove the convergence $\|\bar{x}_\tau - \bar{x}\| = \Theta(\tau^{1/2})$ (cf. Theorem 5.1).

With respect to this result, the present contribution is complementary to the paper (Ralph and Wright [13]).

Other regularizations of MPEC problems have been considered in the literature such as

$$P_\tau^\subseteq: \quad \min_{x} f(x)$$

$$\text{s.t.} \quad g_j(x) \geq 0, \quad j \in J,$$

$$r_i(x)s_i(x) \leq \tau, \quad i \in I,$$

$$r_i(x), s_i(x) \geq 0, \quad i \in I.$$

$$\tilde{P}_\tau^\subseteq: \quad \min_{x} f(x)$$

$$\text{s.t.} \quad g_j(x) \geq 0, \quad j \in J,$$

$$r^T(x)s(x) \leq \tau,$$

$$r_i(x), s_i(x) \geq 0, \quad i \in I.$$

Scholtes [15] answered the question under which assumptions a stationary point $x(\tau)$ of $P_\tau^\subseteq, \tau \downarrow 0$, converges to a B-stationary point of P. In Ralph and Wright [13], it is shown that (under natural conditions) the solution $x(\tau)$ of P_τ^\subseteq converges to a (nearby) solution \bar{x} of MPEC with order $\Theta(\tau)$. Similar results are stated for the problem \tilde{P}_τ^\subseteq.

We emphasize that these regularizations P_τ^\subseteq, \tilde{P}_τ^\subseteq are structurally completely different from the smoothing approach P_τ. For P_τ^\subseteq, e.g., the following is shown in Scholtes [15, Theorem 3.1, Corollary 3.2]: if \bar{x} is a solution of P where MPEC-LICQ and MPEC-SC holds, then for the (nearby) minimizers \bar{x}_τ of P_τ^\subseteq (for τ small enough), the complementarity constraints $r_i(x)s_i(x) \leq \tau, i \in I_{rs}(\bar{x})$, are not active (cf. §2 for a definition of $I_{rs}(\bar{x})$). More precisely,

$$r_i(\bar{x}_\tau) = s_i(\bar{x}_\tau) = 0, \quad \forall i \in I_{rs}(\bar{x})$$
is true. This fact can also be deduced from Corollary 3.1 (cf. §3). In particular, in the case $I = I_\zeta(\tilde{x})$ (for all small $\tau > 0$), the solution \hat{x}_τ of P_τ^ν coincides with the solution \tilde{x} of P. In Hu and Ralph [8], the following parametric version of P has been studied:

$$P(\tau): \min_{\hat{x}} f(x, \tau)$$

s.t. $g_j(x, \tau) \geq 0, \ j \in J$,

$$r_i(x, \tau) \cdot s_i(x, \tau) = 0, \ i \in I,$$

$$r_i(x, \tau), s_i(x, \tau) \geq 0, \ i \in I,$$

under the assumption $f, g, r, s \in C^2$ (with respect to [wrt] all variables). Let \tilde{x} be a local minimizer of $P(0)$ (i.e., $\tau = 0$). In contrast to our perturbation P_τ in (3), under natural assumptions the parametric program $P(\tau)$ can be analyzed using the (smooth) Implicit Function Theorem so that, roughly speaking, the perturbation $P(\tau)$ behaves more smoothly than the perturbation P_τ. (In fact, by using the result of Corollary 3.1, the problem $P(\tau)$ can be analyzed as the parametric version of the relaxed problem $P_\bar{\tau}(\tilde{x})$ [see Corollary 3.1], i.e., it can be treated as a standard parametric optimization problem.) In particular, under the assumption that MPEC-LICQ and MPEC-SOC hold at \tilde{x}, the value function $\varphi(\tau)$ of $P(\tau)$ is differentiable at $\tau = 0$ implying

$$|\varphi(\tau) - \varphi| = \Theta(\sqrt{\tau})$$

and a similar behavior for the minimizers. This contrasts with the nonsmooth behavior $|\varphi(\tau) - \varphi| = \Theta(\sqrt{\tau})$ for the perturbation P_τ (see Example 2.1 and Corollary 5.1).

Remark 1.1. For numerical purposes, it is convenient to model the constraints $r_i(x) s_i(x) = \tau$ and $r_i(x), s_i(x) \geq 0$ equivalently by a unique constraint $\phi_x(r_i(x), s_i(x)) = 0$ where ϕ_x is a so-called parameterized NCP-function (see, e.g., Chen and Mangasarian [1] and Fukushima and Pang [5]).

Remark 1.2. We emphasize that all results in this paper remain valid for problems P containing additional equality constraints $c_i(x) = 0$ if we assume additional linear independence of the gradients $\nabla c_i(x)$. To keep the presentation as clear as possible, we omit these equality constraints.

The smoothing approach P_τ is directly connected with the interior point method for solving finite optimization problems (FP). To solve a program

$$FP: \min f(x)$$

s.t. $g_j(x) \geq 0, \ j \in J,$

one tries to solve the perturbed KKT system

$$E_\zeta: \nabla f(x) - \nabla^T g(x) \mu = 0,$$

$$g_j(x) \mu_j = \tau, \ \forall j \in J,$$

and $\mu_j, g_j(x) \geq 0$. This is a special case of a feasible set of a problem P_τ (including equality constraints). In Wright and Orban [19] the convergence behavior of solutions x_ζ, μ_ζ of E_ζ has been analyzed (via properties of the log barrier function) also for the case that the SC condition is not satisfied at the solution \tilde{x}, $\tilde{\mu}$ of E_0. Here also, a convergence rate $\Theta(\sqrt{\tau})$ has been established (under the weaker MFCQ assumption). So the results of §5 can be seen as a generalization of (some of the) results in Wright and Orban [19].

2. Motivating examples and regularity conditions. We begin with some illustrative examples and formulate regularity conditions to avoid some negative convergence behavior.

Example 2.1.

$$\min x_1 + x_2$$

s.t. $x_1 \cdot x_2 = 0$,

$$x_1, x_2 \geq 0.$$

Here, the set \mathcal{F}_ζ converges to the set \mathcal{F} and the solutions $\tilde{x}_\zeta = (\sqrt{\tau}, \sqrt{\tau})$ of P_ζ converge to the solution $\tilde{x} = 0$ of P with a rate $\|\tilde{x}_\tau - \tilde{x}\| = \sqrt{2} \cdot \sqrt{\tau}$ and $|\varphi_\zeta - \varphi| = \sqrt{2} \cdot \sqrt{\tau}$.
EXAMPLE 2.2.

\[
\begin{align*}
 & \min (x_2 - 1)^2 \\
 & \text{s.t.} \quad x_2 \cdot e^{-x_1} = 0, \\
 & \quad x_2, e^{-x_1} \geq 0, \\
 & \quad g(x) := x_1 \geq 0.
\end{align*}
\]

Here, \(\mathcal{F} = \{(x_1, 0) \mid x_1 \geq 0\} \) coincides with the set \(\mathcal{F} \) of minimizers. The feasible set \(\mathcal{F}_\tau = \{(x_1, \tau e^{x_1}) \mid x_1 \geq 0\} \) however does not converge to \(\mathcal{F} \). The (unique) minimizer of \(P_\tau \) is given by \(\bar{x}_\tau = (-\ln \tau, 1) \), implying \(d(\bar{x}_\tau, \mathcal{F}) = 1 \). The problem here is that the feasible set is not compact.

In the next example (from a preliminary version of Scholtes and Stöhr [16]), the perturbed feasible set \(\mathcal{F}_\tau \) is smaller than \(\mathcal{F} \).

EXAMPLE 2.3.

\[
\begin{align*}
 & \min (x_3 - 1)^2 + x_2^2 \\
 & \text{s.t.} \quad x_1 \cdot x_2 = 0, \\
 & \quad x_1 \cdot x_3 = 0, \\
 & \quad x_1, x_2, x_3 \geq 0.
\end{align*}
\]

The minimizer is given by \(\bar{x} = (0, 0, 1) \). The feasible set \(\mathcal{F}_\tau \) is smaller than \(\mathcal{F} \) and the (unique) minimizer \(\bar{x}_\tau = (2\tau, \frac{1}{2}, \frac{1}{2}) \) does not converge to \(\bar{x} \). The problem here is that the feasible set \(\mathcal{F} \) does not satisfy MPEC-LICQ (at any point \((0, x_3, x_3) \in \mathcal{F} \); see (6)).

In the following example, the feasible set \(\mathcal{F}_\tau \) behaves well but the rate of convergence of \(\| \bar{x}_\tau - \bar{x} \| \) is arbitrarily slow.

EXAMPLE 2.4.

\[
\begin{align*}
 & \min x_1^q + x_2 \\
 & \text{s.t.} \quad x_1 \cdot x_2 = 0, \\
 & \quad x_1, x_2 \geq 0,
\end{align*}
\]

with \(q > 0 \). The minimizer \(\bar{x} = (0, 0) \) of the problem and the solutions of \(P_\tau, \bar{x}_\tau = ((\tau/q)^{1/(q+1)}, q^{1/(q+1)} \tau^{q/(q+1)}) \) show the convergence rate \(\| \bar{x}_\tau - \bar{x} \| = \mathcal{O}(\tau^{1/(q+1)}) \).

In the sequel, we are interested in the convergence behavior and the rate of convergence

\[\mathcal{F}_\tau \rightarrow \mathcal{F}, \quad \varphi_\tau \rightarrow \varphi, \quad \text{and} \quad \bar{x}_\tau \rightarrow \bar{x} \text{ if } \tau \rightarrow 0 \]

for the feasible sets, the value functions, and the solutions of \(P \) and \(P_\tau \). To avoid the negative behavior in the Examples 2–4 we need some (natural) assumptions.

First, motivated by Example 2.2, we assume throughout the paper that the feasible sets are compact. Note that in practice this does not mean a restriction since it is advisable to add (if necessary) to the constraints \(g_i(x) \geq 0 \), e.g., box constraints, \(|x_i| \leq K, \nu = 1, \ldots, n \), for some large number \(K > 0 \). So, in the sequel we assume that for all \(\tau \geq 0 \),

\[\mathcal{F}_\tau \subset X \quad \text{where } X \subset \mathbb{R}^n \text{ is compact.} \tag{4} \]

Under this condition, in particular, global solutions of \(P \) and \(P_\tau \) exist (unless the feasible set is empty). Moreover, we assume throughout the paper that all functions \(f, g_j, r_i, s_i \) are from \(C^3(X, \mathbb{R}) \). Then, in particular, the functions are Lipschitz continuous on \(X \); i.e., there is some \(L > 0 \) such that

\[|f(\hat{x}) - f(x)| \leq L \cdot \| \hat{x} - x \| \quad \forall \hat{x}, x \in X. \tag{5} \]

To avoid the bad behavior in Example 2.3 we have to assume a constraint qualification for the feasible set. To do so, for a point \(x \in \mathcal{F} \) we define the active index sets \(J(x) = \{ j \in J \mid g_j(x) = 0 \}, I_{r_i}(x) = \{ i \in I \mid r_i(x) = s_i(x) = 0 \}, I_{r_i}(x) = \{ i \in I \mid r_i(x) = 0, s_i(x) > 0 \}, \text{ and } I_{r_i}(x) = \{ i \in I \mid r_i(x) > 0, s_i(x) = 0 \} \}. \) We say that at the feasible point \(x \in \mathcal{F} \) the condition MPEC-LICQ holds, if the active gradients

\[\nabla g_j(x), \quad j \in J(x), \quad \nabla r_i(x), \quad i \in I_{r_i}(x) \cup I_{r_i}(x), \quad \nabla s_i(x), \quad i \in I_{r_i}(x) \cup I_{r_i}(x) \tag{6} \]

are linearly independent.
As we shall see later on, this condition will imply that locally around x the set \mathcal{F}_x converges to the set \mathcal{F} with a rate $O(\sqrt{\epsilon})$. To ensure the global convergence we have to assume that MPEC-LICQ holds globally, i.e., that MPEC-LICQ is fulfilled at every point $x \in \mathcal{F}$. We emphasize that this assumption is generically fulfilled as will be shown in the next section (cf. Theorem 3.1).

3. Optimality conditions for minimizers of P. In this section, we are interested in necessary and sufficient optimality conditions for local minimizers of P. New characterizations for minimizers of Order 1 are given and known optimality conditions for solutions of Order 2 (cf., e.g., Luo et al. [11] and Scholtes and Stöhr [16]) are extended. We also review the genericity results for problems P in Scholtes and Stöhr [16]; these results will play an important role throughout the article.

Recall that $\bar{x} \in \mathcal{F}$ is said to be a local minimizer of P of order $\omega > 0$ if in a neighborhood $B_\varepsilon(\bar{x})$, $\varepsilon > 0$, of \bar{x} with some $\kappa > 0$:

$$f(x) \geq f(\bar{x}) + \kappa\|x - \bar{x}\|^\omega \quad \forall x \in \mathcal{F} \cap B_\varepsilon(\bar{x}).$$

(7)

The point \bar{x} is called a global minimizer of order ω if we can choose $\varepsilon = \infty$.

Perhaps the most natural way to obtain optimality conditions for P is to consider the MPEC problem as a problem that can be subdivided into finitely many common finite programs. To this end, let $\bar{x} \in \mathcal{F}$ be given. For any subset $I_0 \subseteq I_\kappa(\bar{x})$ we define $I_1 = I_\kappa(\bar{x}) \setminus I_0$ and consider the common finite optimization problem:

$$P_{I_1}(\bar{x}): \quad \min_{x} f(x)$$

s.t.

$$g_j(x) \geq 0, \quad j \in J(\bar{x}),$$

$$r_i(x) = 0, \quad s_i(x) \geq 0, \quad i \in I_0,$$

$$r_i(x) \geq 0, \quad s_i(x) = 0, \quad i \in I_0^\kappa,$$

$$r_i(x) = 0, \quad i \in I_1(\bar{x}),$$

$$s_i(x) = 0, \quad i \in I_1(\bar{x}).$$

(8)

With the feasible sets $\mathcal{F}_{I_1}(\bar{x})$ of $P_{I_1}(\bar{x})$, obviously, the following piecewise (or disjunctive) description holds (see also, e.g., Luo et al. [11, Chapter 4], Scheel and Scholtes [14, p. 6]).

Lemma 3.1. Let \bar{x} be feasible for P. Then we have

(a) There exists a neighborhood $B_\varepsilon(\bar{x})$ ($\varepsilon > 0$) of \bar{x} such that

$$\mathcal{F} \cap B_\varepsilon(\bar{x}) = \bigcup_{I_0 \subseteq I_\kappa(\bar{x})} \mathcal{F}_{I_0}(\bar{x}) \cap B_\varepsilon(\bar{x}).$$

(b) The point $\bar{x} \in \mathcal{F}$ is a local minimizer of order ω of P if and only if \bar{x} is a local minimizer of order ω of $P_{I_1}(\bar{x})$ for all $I_0 \subseteq I_\kappa(\bar{x})$.

By this lemma, all optimality conditions and genericity results for the common problems $P_{I_1}(\bar{x})$ directly lead to corresponding results for the complementarity constrained program P. To do so, let us recall some notation. $C_{I_1}(\bar{x})$ denotes the cone of critical directions for $P_{I_1}(\bar{x})$ at \bar{x},

$$C_{I_1}(\bar{x}) = \left\{ d \in \mathbb{R}^n \mid \begin{array}{l}
\nabla f(\bar{x})d \leq 0, \quad \nabla g_j(\bar{x})d \geq 0, \quad j \in J(\bar{x}), \\
\nabla r_i(\bar{x})d = 0, \quad \nabla s_i(\bar{x})d \geq 0, \quad i \in I_0, \\
\n\nabla r_i(\bar{x})d \geq 0, \quad \nabla s_i(\bar{x})d = 0, \quad i \in I_0^\kappa, \\
\n\nabla r_i(\bar{x})d = 0, \quad i \in I_1(\bar{x}), \\
\n\nabla s_i(\bar{x})d = 0, \quad i \in I_1(\bar{x})
\end{array} \right\}. $$

(9)

The point $\bar{x} \in \mathcal{F}_{I_1}(\bar{x})$ is called a KKT point for $P_{I_1}(\bar{x})$ if there exist multipliers γ, ρ, σ such that

$$\nabla L(\bar{x}, \gamma, \rho, \sigma) := \nabla f(\bar{x}) - \sum_{j \in J(\bar{x})} \gamma_j \nabla g_j(\bar{x}) - \sum_{i \in I_\kappa(\bar{x})} [\rho_i \nabla r_i(\bar{x}) + \sigma_i \nabla s_i(\bar{x})]$$

$$- \sum_{i \in I_0(\bar{x})} \rho_i \nabla r_i(\bar{x}) - \sum_{i \in I_\kappa(\bar{x})} \sigma_i \nabla s_i(\bar{x}) = 0$$

and

$$\gamma_j \geq 0, \quad j \in J(\bar{x}), \quad \rho_i \geq 0, \quad i \in I_0^\kappa, \quad \sigma_i \geq 0, \quad i \in I_0,$$

(10)

(11)
where \(L \) denotes the Lagrange function, as usual. The vector \((\bar{x}, \gamma, \rho, \sigma)\) is then called a KKT solution of \(P_\bar{\theta}(\bar{x}) \) and the SC slackness is said to hold if

\[
(SC_{\bar{\theta}}(\bar{x})): \quad \gamma_j > 0, \quad j \in J(\bar{x}), \quad \rho_i > 0, \quad i \in I_\rho(\bar{x}), \quad \sigma_i > 0, \quad i \in I_\sigma(\bar{x}),
\]

and the SOC if

\[
(SOC_{\bar{\theta}}(\bar{x})): \quad d^T \nabla^2 \ell(\bar{x}, \gamma, \rho, \sigma) d > 0 \quad \forall d \in C_{\bar{\theta}}(\bar{x}) \setminus \{0\}.
\]

We now introduce some notation for \(P \). We define

\[
C_\bar{x} = \bigcup_{\theta \in \Theta} C_{\bar{\theta}}(\bar{x})
\]

and call \(\bar{x} \in \Theta \) a MPEC-KKT point of \(P \) if \(\bar{x} \) is a KKT point of \(P_{\bar{\theta}}(\bar{x}) \) for all \(\theta_0 \subset I_\rho(\bar{x}) \). A vector \((\bar{x}, \gamma, \rho, \sigma)\) is said to be a MPEC-KKT solution of \(P \) if it is a KKT solution of \(P_{\bar{\theta}}(\bar{x}) \) for all \(\theta_0 \subset I_\rho(\bar{x}) \). Note that for a MPEC-KKT solution of \(P \) from (11) it follows that

\[
(10) \text{ holds with } \gamma_j \geq 0, \quad j \in J(\bar{x}), \quad \rho_i \geq 0, \quad \sigma_i \geq 0, \quad i \in I_\rho(\bar{x}).
\]

We say that such a MPEC-KKT solution satisfies the SC slackness for MPEC if

\[
(MPEC-SC): \quad \gamma_j > 0, \quad j \in J(\bar{x}), \quad \rho_i > 0, \quad \sigma_i > 0, \quad i \in I_\rho(\bar{x}),
\]

and the SOC for MPEC if

\[
(MPEC-SOC): \quad d^T \nabla^2 \ell(\bar{x}, \gamma, \rho, \sigma) d > 0 \quad \forall d \in C_\bar{x} \setminus \{0\}.
\]

Note that (wrt the conditions for \(\rho_i, \sigma_i \) in (15)) the condition SC (i.e., \(I_\rho(\bar{x}) = \emptyset \)) is stronger than MPEC-SC. By definition, the condition MPEC-LICQ at \(\bar{x} \) means that the common LICQ condition holds at \(\bar{x} \) for all problems \(P_{\bar{\theta}}(\bar{x}) \).

Remark 3.1. In the context of MPEC problems there are different concepts of stationarity (or Fritz-John, KKT-points) (see, e.g., Scheel and Scholtes [14]). We emphasize that all these concepts coincide if the MPEC-LICQ assumption holds at \(\bar{x} \) (even the weaker SMFCQ). In this case: \(\bar{x} \) is a MPEC-KKT point \(\Leftrightarrow \bar{x} \) is a \(B \)-stationary point \(\Leftrightarrow \bar{x} \) is a strong stationary point (cf. Scheel and Scholtes [14, Theorem 4]). Therefore, in this paper we will use the term MPEC-KKT point.

If at a MPEC-KKT point \(\bar{x} \) the condition MPEC-LICQ holds, then there is a unique corresponding MPEC-KKT solution \((\bar{x}, \gamma, \rho, \sigma)\) (same unique multipliers \(\gamma, \rho, \sigma \) for \(P \) and all \(P_{\bar{\theta}}(\bar{x}) \)). Moreover, it is not difficult to see that in this case the set \(C_\bar{x} \) simplifies (see (9) and (13)) to the cone:

\[
C_\bar{x} = \left\{ d \right\}.
\]

We now sketch some genericity results for problem \(P \). In the sequel, let all functions \(f, g, s, r \) be in the space \(C^2(\mathbb{R}^n, \mathbb{R}) \) endowed with the \(C^2 \)-topology (strong topology, cf. Guddat et al. [6, p. 23]). Then, for fixed \(n, m, q \), the set of all problems \(P \) can be identified with the set \(\mathcal{P} := \{(f, g, s, r)\} \equiv C^2(\mathbb{R}^n, \mathbb{R})^{q+2m+1} \). We say that a property holds generically for \(P \) if it holds for a (in the \(C^2 \)-topology) dense and open subset \(\mathcal{P}_0 \) of \(\mathcal{P} \).

From the well-known genericity results for the problems \(P_{\bar{\theta}}(\bar{x}) \) (see Guddat et al. [6]), we directly obtain via the piecewise formulation in Lemma 3.1 the following genericity results (see also Scholtes and Stöhr [16]):

Theorem 3.1. There is a dense and open (generic) subset \(\mathcal{P}_0 \) of \(\mathcal{P} \) such that for all MPEC problems \(P \in \mathcal{P}_0 \) the following holds: for any feasible point \(x \in \Theta \), the condition MPEC-LICQ is satisfied and for any local minimizer \(\bar{x} \) of \(P \) the conditions MPEC-SC and MPEC-SOC are fulfilled.
Remark 3.2. We briefly comment on the genericity concept. A generic subset \mathcal{P}_0 of \mathcal{P} is an open and dense subset. Dense means that any MPEC problem from \mathcal{P} can be approximated arbitrarily well by a problem in the (nice) generic set \mathcal{P}_0. The openness implies stability; i.e., if we are given a problem P from the generic set \mathcal{P}_0, then all sufficiently small C^2-perturbations of P remain in the set \mathcal{P}_0. In other words, when dealing with a MPEC problem theoretically or numerically we can expect (generically) that the problem has the structure of a problem in the (nice) generic set; a general purpose solver for MPEC should be designed in such a way that it is able to deal (at least) with all situations encountered by problems in the generic set \mathcal{P}_0. A problem that is not in the generic set can be seen as an exceptional case.

As an example of a typical genericity result, it can be shown that generically the Newton method can be applied to solve nonlinear equations $F(x) = 0$ (see Guddat et al. [6, Chapter 2]) in the following sense: for a generic set of functions $F \in C^2(\mathbb{R}^n, \mathbb{R}^m)$, the regularity conditions $\det(\nabla F(\bar{x})) \neq 0$ hold at all solutions \bar{x} of the equation $F(\bar{x}) = 0$.

We now give some optimality conditions for MPEC problems P (see also Luo et al. [11], Scheel and Scholtes [14]). It is well known (see Scheel and Scholtes [14, Theorem 2, Lemma 2]) that any minimizer of (1) that satisfies MPEC-LICQ (or the weaker SMFCQ) must necessarily be an MPEC-KKT point.

From the piecewise description of P we obtain the following characterizations for minimizers of order one. In the context of MPEC problems, these results are new.

Theorem 3.2 (Primal Conditions of Order 1). For a point \bar{x}, which is feasible for P,

\[C_1 = \{0\} \Rightarrow \bar{x} \text{ is a (isolated) local minimizer of order } \omega = 1 \text{ of } P. \]

If MPEC-LICQ holds at \bar{x}, the converse is also true.

Proof. It is well known (see, e.g., Still and Streng [18, Theorem 3.2, Theorem 3.6]) that $C_{1_b}(\bar{x}) = \{0\}$ implies that \bar{x} is an (isolated) local minimizer of Order 1 of $P_{1_b}(\bar{x})$ under LICQ, the converse holds. Recall that MPEC-LICQ coincides with the common LICQ condition for $P_{1_b}(\bar{x})$. With regard to the definition of C_1 in (13), the result follows from Lemma 3.1. \(\square \)

Theorem 3.3 (Dual Conditions of Order 1). Let MPEC-LICQ hold at $\bar{x} \in \overline{\mathcal{P}}$. Then \bar{x} is a (isolated) local minimizer of order $\omega = 1$ of P if and only if one of the following equivalent conditions (a) or (b) is satisfied:

(a) $\nabla f(\bar{x}) \in \mathring{\mathcal{L}}_{\bar{x}}$ where

\[\mathcal{L}_{\bar{x}} = \left\{ d = \sum_{j \in J(\bar{x})} \gamma_j \nabla g_j(\bar{x}) + \sum_{i \in I_{s_b}(\bar{x})} \rho_i \nabla r_i(\bar{x}) + \sum_{i \in I_{s_b}(\bar{x})} \sigma_i \nabla s_i(\bar{x}) \right\}, \]

(b) The vector \bar{x} is an MPEC-KKT point with (unique) multipliers γ, ρ, σ such that $|J(\bar{x})| + 2|I_{s_b}(\bar{x})| + |I_{s_b}(\bar{x})| = n$ and $\gamma_j > 0$, $j \in J(\bar{x})$, $\rho_i > 0$, $\sigma_i > 0$, $i \in I_{s_b}(\bar{x})$, i.e., MPEC-SC holds.

Proof. (a) It is well known (cf., e.g., Still and Streng [18]) that the primal condition $C_{1_b}(\bar{x}) = \{0\}$ is equivalent to the condition $\nabla f(\bar{x}) \in \mathring{\mathcal{L}}_{\bar{x}}$ where

\[\mathcal{L}_{\bar{x}} = \left\{ d = \sum_{j \in J(\bar{x})} \gamma_j \nabla g_j(\bar{x}) + \sum_{i \in I_{s_b}(\bar{x})} \rho_i \nabla r_i(\bar{x}) + \sum_{i \in I_{s_b}(\bar{x})} \sigma_i \nabla s_i(\bar{x}) \right\}, \]

By Lemma 3.1, this yields (a).

(b) We now prove under MPEC-LICQ (a) \(\Leftrightarrow \) (b). Note that the direction "\(\Leftarrow \)" is evident. To prove the converse, let us assume that $\nabla f(\bar{x}) \in \mathring{\mathcal{L}}_{\bar{x}}$ but $|J(\bar{x})| + 2|I_{s_b}(\bar{x})| + |I_{s_b}(\bar{x})| < n$. The latter means that there exists $d \in \mathbb{R}^n$ such that $d \not\in S_0$:

\[S_0 := \text{span}\{\nabla g_j(\bar{x}), j \in J(\bar{x}), \nabla r_i(\bar{x}), i \in I_{s_b}(\bar{x}) \cup I_{b}(\bar{x}), \nabla s_i(\bar{x}), i \in I_{s_b}(\bar{x}) \cup I_{b}(\bar{x})\}. \]

Note that since, in particular, \bar{x} is an MPEC-KKT point, it follows that $S_0 = \text{span}\{-\nabla f(\bar{x})\} \cup S_0$. Consequently, for any $\varepsilon > 0$, $\varepsilon d \not\in \text{span}\{-\nabla f(\bar{x})\} \cup S_0$; thus $\nabla f(\bar{x}) + \varepsilon d \not\in S_0$ in contradiction to (a). Let us now assume that MPEC-SC does not hold, say $\gamma_1 = 0$. Then, by MPEC-LICQ for any $\varepsilon > 0$, the vector $\nabla f(\bar{x}) - \varepsilon \nabla g_j(\bar{x})$ is not contained in $\mathcal{L}_{\bar{x}}$, which is a contradiction to (a). \(\square \)
We now give a characterization of minimizers of Order 2. We refer to Schel and Scholtes [14] for similar necessary and sufficient conditions (under weaker assumptions).

Theorem 3.4 (Dual Conditions of Order 2). Let MPEC-LICQ hold at $\bar{x} \in \mathcal{F}$ and assume $C_2 \neq \{0\}$ (i.e., in view of Theorem 3.2, \bar{x} is not a local minimizer of Order 1). Then \bar{x} is a (isolated) local minimizer of order $\omega = 2$ of P if and only if \bar{x} is an MPEC-KKT point of P such that with (unique) multipliers γ, ρ, σ the condition MPEC-SOC holds.

(Under this condition, \bar{x} is locally the unique MPEC-KKT point of P.)

Proof. $C_2 \neq \{0\}$ implies $C_2(\bar{x}) \neq \{0\}$ for (at least) one set $I_0 \subset I_x(\bar{x})$ so that \bar{x} is not a local minimizer of Order 1 of $P(\bar{x})$ (see the proof of Theorem 3.2) and thus not of P (cf. Lemma 3.1). By Still and Streng [18, Theorem 3.6] (under MPEC-LICQ) (for any $I_0 \subset I_x(\bar{x})$), \bar{x} is a (isolated) local minimizer of Order 2 of $P(\bar{x})$ iff \bar{x} is a KKT point for $P(\bar{x})$ satisfying (12). Under this condition, by Still and Streng [18, Theorem 3.23], \bar{x} is locally the unique KKT point of $P(\bar{x})$. Again, the result follows from Lemma 3.1. □

Note that in view of the genericity result in Theorem 3.1 we can state

generically each local minimizer of P has either order $\omega = 1$ or order $\omega = 2$. (18)

It is interesting to note that with the common finite problem (a relaxation of P)

$$
\begin{align*}
\min_{x} & \quad f(x) \\
\text{s.t.} & \quad g_j(x) \geq 0, \quad j \in J(\bar{x}), \\
& \quad r_i(x) \geq 0, s_i(x) \geq 0, \quad i \in I_x(\bar{x}), \\
& \quad r_i(x) = 0, \quad i \in I_x(\bar{x}), \\
& \quad s_i(x) = 0, \quad i \in I_x(\bar{x}),
\end{align*}
$$

the following is true (cf. also Schel and Scholtes [14]).

Corollary 3.1. Let MPEC-LICQ hold at $\bar{x} \in \mathcal{F}$. Then \bar{x} is a local minimizer of order $\omega = 1$ or $\omega = 2$ of P if and only if \bar{x} is a local minimizer of order $\omega = 1$ or $\omega = 2$ of $P(\bar{x})$. (Recall that generically each local minimizer of P is either of Order 1 or of Order 2.)

Proof. Under MPEC-LICQ, any local minimizer \bar{x} of P must be a MPEC-KKT point of P with unique multipliers γ, ρ, σ. Note that by (14), $(\bar{x}, \gamma, \rho, \sigma)$ is also a KKT solution of $P(\bar{x})$ with the same Lagrange function $L(x, \gamma, \rho, \sigma)$. Moreover, the set of critical directions for $P(\bar{x})$ coincides with C_2 (see (17)). So the first-order optimality condition $C_2 = \{0\}$ (cf. Theorem 3.2) and the second order optimality conditions (cf. Theorem 3.4) for P and $P(\bar{x})$ coincide. □

4. The convergence behavior of the feasible set \mathcal{F}_τ. In this section, we consider the convergence behavior of the feasible set \mathcal{F}_τ from local and global viewpoints. The local convergence relies on a local MPEC-LICQ assumption; the global results are proven under a global assumption.

We begin with an auxiliary result.

Lemma 4.1. For $x_\tau \in \mathcal{F}_\tau$ and $\tau \to 0$, it follows that $d(x_\tau, \mathcal{F}) \to 0$ uniformly: to any $\varepsilon > 0$, there exists $\tau_0 > 0$ such that for all $0 < \tau \leq \tau_0$ and for all $x_\tau \in \mathcal{F}_\tau$ the bound $d(x_\tau, \mathcal{F}) < \varepsilon$ holds.

Proof. Assuming that the statement is not true, there must exist $\gamma > 0$ and a sequence $x_\tau \in \mathcal{F}_\tau$ such that for $\tau \to 0$, $d(x_\tau, \mathcal{F}) \geq \gamma$.

Due to the compactness Assumption (4) we can choose a convergent subsequence $x_{\tau_n} \to \bar{x} \in X$. The condition $r_i(x_{\tau_n})s_i(x_{\tau_n}) = \tau_n, g_j(x_{\tau_n}) \geq 0$ together with the continuity of the functions r_i, s_i, g_j leads for $\tau_n \to 0$ to $r_i(\bar{x})s_i(\bar{x}) = 0$ and $g_j(\bar{x}) \geq 0$; i.e., $\bar{x} \in \mathcal{F}$, a contradiction. □

To prove our main results on the behavior of \mathcal{F}_τ, we make use of a local (local) diffeomorphism. The idea is to transform the problem into an equivalent problem with simpler structure so that the proofs of the results become technically much simpler. However, this approach relies on the MPEC-LICQ assumption. Such a transformation has been mentioned in Scholtes and Stöhr [16] to illustrate the local behavior of \mathcal{F}_τ. Here, we present a complete global analysis.
Consider a point $\tilde{x} \in \mathcal{T}$ satisfying MPEC-LICQ with $|J(\tilde{x})| = q_0$, $|I_r(\tilde{x})| = p$ where $p \leq m$, $q_0 \leq q$, and $m + p + q_0 \leq n$. Without loss of generality (wlog) we can assume

$$J(\tilde{x}) = \{1, \ldots, q_0\}, \quad I_r(\tilde{x}) = \{1, \ldots, p\}, \quad I_s(\tilde{x}) = \{p + 1, \ldots, m\}, \quad I_\tau(\tilde{x}) = \emptyset.$$ By MPEC-LICQ, the gradients $\nabla g_j(\tilde{x})$, $j \in J(\tilde{x})$, $\nabla r_i(\tilde{x})$, $i = 1, \ldots, m$, $\nabla s_i(\tilde{x})$, $i = 1, \ldots, p$, are linearly independent and we can complete these vectors to a basis of \mathbb{R}^n by adding vectors v_i, $i = m + p + q_0 + 1, \ldots, n$. Now, we define the transformation $y = T(\tilde{x})$ by

$$y_i = r_i(x), \quad i = 1, \ldots, m,$$
$$y_{i+m} = s_i(x), \quad i = 1, \ldots, p,$$
$$y_{n+1} = s_i(x), \quad i = 1, \ldots, q_0,$$
$$y_i = v^T(x - \tilde{x}), \quad i = m + p + q_0 + 1, \ldots, n.$$ (20)

By construction, the Jacobian $\nabla T(\tilde{x})$ is regular and T defines locally a diffeomorphism. This means that there exists $e = e(\tilde{x}) > 0$ and neighborhoods $B_{e}(\tilde{x})$ of \tilde{x} and $U_{e}(y) := T(B_{e}(\tilde{x}))$ of $\tilde{y} = 0$ such that $T : B_{e}(\tilde{x}) \to U_{e}(\tilde{y})$ is a bijective mapping with $T, T^{-1} \in C^1$, $T(\tilde{x}) = \tilde{y}$, and that for $y = T(x)$ it follows that

$$y_{m+p+1} \geq 0 \quad j = 1, \ldots, q_0,$$
$$y_i \cdot y_{i+m} = \tau \quad i = 1, \ldots, p,$$
$$x \in \mathcal{T} \cap B_{e}(\tilde{x}) \iff y_j \cdot \delta_j (y) = \tau \quad j = p+1, \ldots, m, \quad y \in U_{e}(\tilde{y}),$$
$$y_i \geq 0 \quad i = 1, \ldots, m,$$
$$y_{i+m} \geq 0 \quad i = 1, \ldots, p,$$

where $\delta_j (y) := s_j(T^{-1}(\tilde{y})) = s_j(\tilde{x}) > 0$, $j = p+1, \ldots, m$ and $\delta_{m+i}(y) := g_j(T^{-1}(\tilde{y})) = g_j(\tilde{x}) > 0$, $j = q_0+1, \ldots, q$.

In particular, since T is a diffeomorphism, the distance between two points remains equivalent in the sense that with constants $0 < \kappa_- < \kappa_+$,

$$\kappa_- \|y_1 - y_2\| \leq \|x_1 - x_2\| \leq \kappa_+ \|y_1 - y_2\| \quad \forall x_1, x_2 \in B_{e}(\tilde{x}), \quad y_1 = T(x_1), \quad y_2 = T(x_2).$$

So (after applying a diffeomorphism T) we may assume $\tilde{x} = 0$,

$$g_j(x) = x_{m+p+j} \quad j = 1, \ldots, q_0,$$
$$r_j(x) = x_i \quad i = 1, \ldots, m,$$
$$s_j(x) = x_{i+m} \quad i = 1, \ldots, p,$$
$$c'_i := s_i(\tilde{x}) > 0, \quad i = p+1, \ldots, m,$$ (21)

and that there is some $e > 0$ such that

$$g_j(x) = x_{m+p+j} \geq 0 \quad j = 1, \ldots, q_0,$$
$$h_j(x) = x_i, x_{i+m} = \tau \quad i = 1, \ldots, p,$$
$$x \in \mathcal{T} \cap B_{e}(\tilde{x}) \iff h_j(x) = x_i, s_j(x) = \tau \quad i = p+1, \ldots, m,$$ (23)
$$x_i \geq 0 \quad i = 1, \ldots, m,$$
$$x_{i+m} \geq 0 \quad i = 1, \ldots, p.$$

By choosing e small enough, we also can assume

$$s_i(x) \geq \frac{c'_i}{2}, \quad i = p+1, \ldots, m, \quad \forall x \in B_{e}(\tilde{x}).$$ (24)

By making use of the previously described transformation, we are now able to prove the local convergence result for \mathcal{T}.

Lemma 4.2. Let MPEC-LICQ hold at $\tilde{x} \in \mathcal{T}$.

(a) Then there exist $e, \tau_0, \alpha, \beta > 0$ such that for all $0 < \tau \leq \tau_0$ the following holds: there exist $\tilde{x}_\tau \in \mathcal{T}$ with

$$\|\tilde{x}_\tau - \tilde{x}\| \leq \alpha \sqrt{\tau},$$ (25)
and for any \(\tilde{x}_r \in \tilde{\mathcal{F}} \cap B_r(\tilde{x}) \) there exists a point \(\hat{x} \in \mathcal{F} \cap B_r(\tilde{x}) \) satisfying

\[
\|\hat{x}_r - \tilde{x}_r\| \leq \beta \sqrt{\tau}.
\]

(26)

Moreover, if SC holds at \(\hat{x} \), the statements are true with \(\sqrt{\tau} \) replaced by \(\tau \).

(b) If the condition SC is not fulfilled at \(\tilde{x} \), then the convergence rate \(\theta(\sqrt{\tau}) \) in (25) is optimal. More precisely, there is some \(\gamma > 0 \) such that for all \(\tilde{x} \in \tilde{\mathcal{F}} \), the relation \(\|\tilde{x}_r - \tilde{x}\| \geq \gamma \sqrt{\tau} \) holds for all \(\tau \).

Proof. (a) Let MPEC-LICQ hold at \(\tilde{x} \). As discussed before (after applying a diffeomorphism) we can assume that \(\tilde{x} = 0 \) and that in a neighborhood \(B_r(\tilde{x}) \) of \(\tilde{x} \) the set \(B_r(\tilde{x}) \cap \mathcal{F} \) is described by (23). To construct a suitable element \(x^* \in \mathcal{F} \), we fix the components \(x^*_i = x^*_i = \sqrt{\tau}, i = 1, \ldots, p \) and \(x^*_i = 0, i = m + p + 1, \ldots, n \). From (23), we then find

\[
g_j(x^*) = 0 \quad j = 1, \ldots, q_0, \]

\[
h_i(x^*) = \tau \quad i = 1, \ldots, p, \]

\[
h_i(x^*) = x^*_i \cdot s_i(x^*) = \tau \quad i = p + 1, \ldots, m,
\]

where the first two relations are already satisfied. So we only need to consider the remaining equations

\[
h_i(\tilde{x}) := x^*_i \cdot s_i(x^*) = \tau, \quad i = p + 1, \ldots, m, \tag{27}
\]

which (for fixed \(\tau \)), depend only on the remaining variables \(\tilde{x} = (x^*_{p+1}, \ldots, x^*_n) \). For \(\tilde{x} = 0 \), the gradients

\[\nabla h_i(0) = e_i s_i(0) = e_i c_i, \quad i = p + 1, \ldots, m \quad \text{(cf. (22))},\]

are linearly independent. As usual, \(e_i \) denote the unit vectors. So the function \(h: \mathbb{R}^{m-p} \to \mathbb{R}^{m-p}, h = (h_{p+1}, \ldots, h_m), h(0) = 0 \) has locally near \(\tilde{x} = 0 \) a \(C^1 \)-inverse such that (for small \(\tau \)) the vector \(\tilde{x}^* := h^{-1}(e \tau) \) (with \(e = (1, \ldots, 1) \in \mathbb{R}^{m-p} \)) defines a solution of (27). Because of \(h^{-1}(0) = 0 \), it follows that \(\|\tilde{x}^*\| = \theta(\tau) \).

Altogether with the other fixed components \(x^*_i \), this vector \(\tilde{x}^* \) defines a feasible point \(x^* \in \mathcal{F} \) that satisfies

\[
\|x^* - \tilde{x}\| \leq \theta(\sqrt{\tau}).
\]

We now prove (26). As shown above (cf. (23)), for some \(\epsilon > 0 \) the point \(\tilde{x}_r \in B_r(\tilde{x}) \) is in \(\mathcal{F} \) if and only if \(x := \tilde{x}_r \) satisfies the relations

\[
g_j(x) = x_{m+p+j} \geq 0 \quad j = 1, \ldots, q_0, \]

\[
h_i(x) = x_i \cdot x_{m+i} = \tau \quad i = 1, \ldots, p, \]

\[
h_i(x) = x_i \cdot s_i(x) = \tau \quad i = p + 1, \ldots, m.
\]

Obviously, \(\min\{x_i, x_{m+i}\} \leq \sqrt{\tau}, i = 1, \ldots, p \), so that, wlog, \(x_i \leq \sqrt{\tau}, i = 1, \ldots, p \). By (24) for \(x = \tilde{x}_r \) it follows that

\[
x_i = \frac{\tau}{s_i(x)} \leq \frac{\tau}{c_i/2}, \quad i = p + 1, \ldots, m. \tag{28}
\]

Given this element \(x = \tilde{x}_r \in \tilde{\mathcal{F}} \), we now choose the point \(\hat{x}_r \) of the form \(\hat{x}_r = (0, \ldots, 0, x_{m+1}, \ldots, x_n) \) that is contained in \(\mathcal{F} \). By using (28) and \(x_i \leq \sqrt{\tau}, i = 1, \ldots, p \), and by putting \(c_i = \min\{c_i/2, i = p + 1, \ldots, m\} \), we find \((x = \tilde{x}_r) \)

\[
\|\hat{x}_r - \tilde{x}_r\| \leq \sqrt{p \tau + (m-p) \frac{\tau^2}{c_i^2}} \leq \theta(\sqrt{\tau}).
\]

Now let SC be satisfied at \(\tilde{x} \in \tilde{\mathcal{F}} \) (see (2)). Then, locally in \(B_r(\tilde{x}) \) the set \(\mathcal{F} \) is defined by \((\tilde{x} = 0) \)

\[
g_j(x) = x_{m+j} \geq 0 \quad j = 1, \ldots, q_0, \]

\[
x_i \cdot s_i(x) = \tau \quad i = 1, \ldots, m, \tag{29}
\]

where \(s_i(x) \geq c_i/2 \) for all \(x \in B_r(\tilde{x}) \). As in the first part of the proof, we can fix the coefficients of \(x^* \) by \(x^*_i = \tilde{x}_r \) \((=0), i = m + 1, \ldots, n \), and find a solution \(x = x^* \in \mathcal{F} \) by applying the Inverse Function Theorem to the remaining \(m \) equations

\[
h_i(\tilde{x}) := x_i s_i(x) = \tau, \quad i = 1, \ldots, m,
\]
depending only on the remaining variables $\tilde{x} := (x_1, \ldots, x_m)$. This provides us with a solution x^τ of (29) satisfying
\[\|x^\tau - \tilde{x}\| = \theta(\tau). \]

On the other hand, for any solution $x := \tilde{x}$ of (29) in $B_\varepsilon(\tilde{x})$, the point $\tilde{x}_r := (0, \ldots, 0, x_{m+1}, \ldots, x_n)$ is an element in \mathcal{F} with $\|\tilde{x}_r - \tilde{x}\| = \theta(\tau)$.

(b) Suppose now that SC is not fulfilled at \tilde{x}; i.e., for some $i_0 \in \{1, \ldots, m\}$ (see (a)):
\[h_i(\tilde{x}) = \tilde{x}_{i_0} \cdot \tilde{x}_{m+i_0} = 0 \quad \text{with} \quad \tilde{x}_{i_0} = \tilde{x}_{m+i_0} = 0. \]

Then near \tilde{x} any point $x^\tau \in \mathcal{F}_r$ must satisfy $x_{i_0} \cdot x_{m+i_0} = \tau$, which implies ($\tilde{x} = 0$)
\[\|x^\tau - \tilde{x}\| \geq \max\{x_{i_0}^+ \cdot x_{m+i_0}^+, 2x_{i_0}^- \cdot x_{m+i_0}^-\} \geq \sqrt{\tau}. \]

Recall that (because of the diffeomorphism applied) this inequality only holds up to a constant $\gamma > 0$. \(\Box\)

Lemma 4.2 yields the local convergence of \mathcal{F}_r near a point $\tilde{x} \in \mathcal{F}$. We now are interested in the global convergence behavior (on the whole compact set X, cf. (4)).

Lemma 4.3. Let MPEC-LICQ hold at each point $\tilde{x} \in \mathcal{F}$. Then there are $\tau_0, \alpha, \beta > 0$ such that for all $0 < \tau \leq \tau_0$ the following holds: for each $\tilde{x} \in \mathcal{F}$, there exists $\tilde{x}_r \in \mathcal{F}$ with
\[\|\tilde{x}_r - \tilde{x}\| \leq \alpha\sqrt{\tau}, \quad (30) \]

and for any $\tilde{x}_r \in \mathcal{F}_r$, there exists a point $\tilde{x}_r \in \mathcal{F}$ satisfying
\[\|\tilde{x}_r - \tilde{x}_r\| \leq \beta\sqrt{\tau}. \quad (31) \]

Moreover, if SC holds at all $\tilde{x} \in \mathcal{F}$, the statements are true with $\sqrt{\tau}$ replaced by τ.

Proof. We first prove (31). To extend the analysis from a local to a global statement we have to apply a compactness argument. Recall the local transformation constructed above near any point $\tilde{x} \in \mathcal{F}$ (see (23)). The union $\bigcup_{i \in \mathcal{I}} B_{\varepsilon_0}(\tilde{x})$ forms an open cover of the compact feasible set $\mathcal{F} \subset X$. Consequently, by definition of compactness, we can choose a finite cover: i.e., points $x \in \mathcal{F}$, $\nu = 1, \ldots, N$, such that with $e_\nu = e(x_\nu)$ the set $\bigcup_{\nu = 1, \ldots, N} B_{\varepsilon_\nu}(x_\nu)$ provides an open cover of \mathcal{F} and with $\beta_\nu > 0$ the corresponding Condition (26) holds. By defining $B_{\varepsilon_\nu}(\mathcal{F}) = \{x \in X \mid d(x, \mathcal{F}) < \varepsilon\}$, we can choose some $\varepsilon_0 > 0$ (small) such that
\[B_{\varepsilon_0}(\mathcal{F}) \subset \bigcup_{\nu = 1, \ldots, N} B_{\varepsilon_\nu}(x_\nu). \]

By choosing $\varepsilon = \varepsilon_0$ and τ_0 in Lemma 4.1, we find for all $0 \leq \tau \leq \tau_0$:
\[\mathcal{F}_r \subset B_{\varepsilon_0}(\mathcal{F}) \subset \bigcup_{\nu = 1, \ldots, N} B_{\varepsilon_\nu}(x_\nu). \]

The second convergence result (31) now directly follows by combining the finite cover argument with the local convergence and by noticing that we can choose as convergence constant the number $\beta = \max\{\beta_\nu, \nu = 1, \ldots, N\}$.

To prove (30), we have to show that the following sharpening of the local bound (25) holds: for $\tilde{x} \in \mathcal{F}$, there exist $\tau_0 > 0$, $\varepsilon > 0$ such that for any $x \in \mathcal{F} \cap B_{\varepsilon}(\tilde{x})$ and for any $0 \leq \tau \leq \tau_0$ there is a point $x_r \in \mathcal{F}_r$ with
\[\|x - x\| \leq \alpha\sqrt{\tau}. \quad (32) \]

Then a finite cover argument as above yields the global Relation (30). We only sketch the proof of (32). Let $\tilde{x} \in \mathcal{F}$ be fixed. In the proof of Lemma 4.2(a), we made use of a local diffeomorphism $T_x(x)$ leading to Relation (25). This transformation T_x is constructed depending on the active index set $I_x(\tilde{x}) := I_{\mu}(\tilde{x}) \cup I_{\mu}(\tilde{x}) \cup I_{\mu}(\tilde{x}) \cup J(\tilde{x})$ (see (20)). For any x near \tilde{x}, we have $I_{\mu}(x) \subset I_{\mu}(\tilde{x})$ and there are only finitely many choices $l_{\mu}^+, \mu = 1, \ldots, R$, for $I_{\mu} = I_{\mu}(\tilde{x})$. So if we fix l_{μ}^+, $l_{\mu}^+ \subset I_{\mu}(\tilde{x})$, any point \tilde{x} near \tilde{x} yields a local diffeomorphism T_x, which depends smoothly on \tilde{x} (see the construction (20)). So we find a common bound: there exist $\alpha_\mu, l_{\mu}^+ > 0$ such that for any $x \in \mathcal{F} \cap B_{\varepsilon_0}(\tilde{x})$ with $I_{\mu}(x) = l_{\mu}$ there is a point $x_r \in \mathcal{F}_r$ such that (for all τ small)
\[\|x - x\| \leq \alpha_\mu\sqrt{\tau}. \]

Then, by choosing $\varepsilon = \min\{l_{\mu}^+ \mid \mu = 1, \ldots, R\}$ and $\alpha = \max\{\alpha_\mu \mid \mu = 1, \ldots, R\}$, we have shown the Relation (32). \(\Box\)

Note that Lemma 4.3 proves that the convergence in the Hausdorff distance
\[d(\mathcal{F}_r, \mathcal{F}) := \max\left\{ \max_{x \in \mathcal{F}_r} d(x, \mathcal{F}_r), \max_{x \in \mathcal{F}} d(x, \mathcal{F}_r) \right\} \]

between \mathcal{F}_r and \mathcal{F} satisfies $d(\mathcal{F}_r, \mathcal{F}) = \theta(\sqrt{\tau})$.
5. Convergence results for the value function and for the solutions of P_τ. Let (in this section) $\bar{x} \in \mathcal{F}$ denote a global or local minimizer of P and \tilde{x}, a nearby local solution of P_τ. Recall that by our compactness Assumptions (4) a global minimizer of P_τ always exists (assuming $\mathcal{F}_{\tau} \neq \emptyset$).

In the present section, we are interested in the convergence behavior and the convergence rate

$$\varphi_\tau \rightarrow \varphi \quad \text{and} \quad \tilde{x}_\tau \rightarrow \bar{x} \quad \text{if} \; \tau \rightarrow 0$$

for the value functions and the solutions of P and P_τ. From a viewpoint of parametric optimization to ensure convergence, the following assumptions are needed:

Assumption (A_1). There exists a (global) solution \bar{x} of P and a continuous function $\alpha : [0, \infty) \rightarrow [0, \infty)$, $\alpha(0) = 0$ such that for any $\tau > 0$ (small enough) we can find a point $x_\tau \in \mathcal{F}_\tau$ satisfying

$$\|x_\tau - \bar{x}\| \leq \alpha(\tau).$$

Assumption (A_2). There exists a continuous function $\beta : [0, \infty) \rightarrow [0, \infty)$, $\beta(0) = 0$ such that for any $\tau > 0$ (small enough) the following holds: we can find a (global) solution \tilde{x}_τ of P_τ and a corresponding point $\hat{x}_\tau \in \mathcal{F}_\tau$ such that

$$\|\hat{x}_\tau - \tilde{x}_\tau\| \leq \beta(\tau).$$

It now appears that (A_1) is connected to the upper semicontinuity of φ_τ (and \mathcal{F}_τ) (see Lemma 5.1) and (A_2) to the lower semicontinuity (see Lemma 5.2). To show this, we have to use that by Lemma 4.2 the Assumption (A_1) holds with $\beta(\tau) = \theta(\sqrt{\tau})$ if MPEC-LICQ holds at one (at least one) solution $\bar{x} \in \mathcal{F}$ and (see Lemma 5.2) (A_2) holds with $\beta(\tau) = \theta(\sqrt{\tau})$ if MPEC-LICQ is satisfied at all $\bar{x} \in \mathcal{F}$.

Lemma 5.1. Let MPEC-LICQ hold at a point $\bar{x} \in \mathcal{F}$ (at least one). Then

(a) there exist constants $L > 0$, $\alpha > 0$ such that for all τ small enough, the relation

$$\varphi_\tau - \varphi \leq L\alpha(\tau)$$

is true with $\alpha(\tau) = \alpha\sqrt{\tau}$. If, moreover, SC is satisfied at \bar{x}, the inequality holds with $\alpha(\tau) = \alpha\tau$;

(b) to any $\varepsilon > 0$ there is some τ_1 such that

$$d(\tilde{x}_\tau, \mathcal{F}) < \varepsilon \quad \text{for all} \; \tilde{x}_\tau \in \mathcal{F}_\tau \quad \text{and for all} \; 0 \leq \tau \leq \tau_1.$$

Proof. (a) By Lemma 4.2, the Relation (A_1) holds with the given function $\alpha(\tau)$. So with the solution \bar{x} of P and the points x_τ in (A_1) by using the Lipschitz continuity (5), we find

$$\varphi_\tau - \varphi \leq f(x_\tau) - f(\bar{x}) \leq L\|x_\tau - \bar{x}\| \leq L\alpha(\tau).$$

(b) Suppose, to the contrary, that there is some $\varepsilon > 0$ and some sequence $\tau_v \rightarrow 0$ with corresponding $\tilde{x}_{\tau_v} \in \mathcal{F}_{\tau_v}$ satisfying

$$d(\tilde{x}_{\tau_v}, \mathcal{F}) \geq \varepsilon. \quad (33)$$

By compactness assumption without restriction we can assume $\tilde{x}_{\tau_v} \rightarrow \hat{x}$. In view of Lemma 4.1, it follows that $\hat{x} \in \mathcal{F}$, and from (a) we find

$$f(\tilde{x}_{\tau_v}) - f(\bar{x}) \leq \varphi(\hat{x}) \leq \varphi(\tilde{x}_{\tau_v}) \rightarrow \varphi,$$

and thus $f(\hat{x}) = \varphi$ implying $\hat{x} \in \mathcal{F}$ in contradiction to (33). □

Lemma 5.2. Let MPEC-LICQ hold at every point $\bar{x} \in \mathcal{F}$. Then the Condition (A_2) is satisfied with $\beta(\tau) = \beta\sqrt{\tau}$ for some $\beta > 0$ (and with $\beta(\tau) = \beta\tau$ in the case that SC holds at all $\bar{x} \in \mathcal{F}$) and there exists $L > 0$ such that for all τ small enough

$$-L\beta(\tau) \leq \varphi_\tau - \varphi.$$

Proof. The set $\mathcal{F} \subset X$ is compact and arguing as in the proof of Lemma 4.3 it follows that $\bigcup_{\bar{x} \in \mathcal{F}} B_{\varepsilon(\bar{x})}(\bar{x})$ forms an open cover of the set \mathcal{F}. So we can choose a finite cover $\mathcal{F} \subset \bigcup_{\tau = 1, \ldots, K} B_{\varepsilon(\bar{x})}(\bar{x})$, $\tilde{x}_\tau \in \mathcal{F}$ and define $B_{\varepsilon}(\mathcal{F}) := \{x \mid d(x, \mathcal{F}) < \varepsilon\}$. Now we choose $\varepsilon_1 > 0$ such that

$$B_{\varepsilon_1}(\mathcal{F}) \subset \bigcup_{\tau = 1, \ldots, K} B_{\varepsilon_1}(\tilde{x}_\tau).$$
By Lemma 5.1(b), there exists some $\tau_1 > 0$ such that
$$\bar{\bar{x}}_t \in B_{\beta_t}(\mathcal{F}) \quad \text{for all} \quad \bar{\bar{x}}_t \in \mathcal{F}_t \quad \text{and for all} \quad 0 \leq \tau \leq \tau_1.$$

By construction, for $0 \leq \tau \leq \tau_1$, any point $\bar{x}_t \in \mathcal{F}_t$ is contained in (at least) one of the balls $B_{\nu}(\bar{x}_t)$, $\nu \in \{1, \ldots, K\}$ ($\nu = \nu_t$); in view of Lemma 4.2(a), we can choose a point $\hat{x}_t \in \mathcal{F}$ such that
$$\|\hat{x}_t - \bar{x}_t\| < \beta_t \sqrt{\tau} \quad \text{(respectively} < \beta_t \tau)$$
(β_t corresponding to \bar{x}_t). By defining $\beta = \max\{\beta_t \mid \nu = 1, \ldots, K\}$, we have proven (A_2). With these points \bar{x}_t, \hat{x}_t by using (5) again we find
$$\varphi_t - \varphi \geq f(\hat{x}_t) - f(\bar{x}_t) \geq -L\beta(\tau). \quad \square$$

To obtain qualitative results on the rate of convergence for the solutions \bar{x}_t of P_t, we have to assume some growth condition for f at the solution \hat{x} of P. We will assume that \hat{x} is a minimizer of order $\omega \geq 1$ (see (7)).

Sufficient and necessary conditions for these assumptions are given in §3. Note that in this case $\mathcal{F} = \{\bar{x}\}$. For minimizers of order $\omega = 2$, the next result, i.e., a convergence $\mathcal{C}(\tau^{1/4})$, is also proven in Ralph and Wright [13] (although with a different technique).

Corollary 5.1. Let \bar{x} be a global minimizer of P of order $\omega \geq 1$ and let MPEC-LICQ hold at \bar{x}. Then $|\varphi_t - \varphi| \leq \mathcal{C}(\sqrt{\tau})$ and there is some $c > 0$ such that for any global minimizer \bar{x}_t of P_t it follows that
$$\|\bar{x}_t - \bar{x}\| \leq c \cdot \sqrt{\tau}^{1/\omega}.$$

If SC holds at $\bar{x}/\sqrt{\tau}$, can be replaced by τ.

Proof. By Lemmas 5.1 and 5.2, the convergence for the value function φ_t is immediate. Moreover, the Assumptions (A1) and (A2) hold with functions $\alpha(\tau) = \alpha \sqrt{\tau}$, etc. Then with the points $\bar{x}, \hat{x}, x, x \in \mathcal{F}_t$ in (A1) and (A2) we obtain
$$f(\bar{x}) \leq f(\hat{x}_t) \leq f(\bar{x}_t) + L\beta(\tau) \leq f(x_t) + L\beta(\tau) \leq f(\bar{x}) + L\alpha(\tau) + L\beta(\tau)$$
and thus
$$0 \leq f(\hat{x}_t) - f(\bar{x}) \leq L\alpha(\tau) + L\beta(\tau).$$

Again, by taking the point $\hat{x}_t \in \mathcal{F}$ in (A2) in view of (7), this inequality yields
$$\|\bar{x}_t - \bar{x}\| \leq \|\bar{x}_t - \hat{x}_t\| + \|\hat{x}_t - \bar{x}\| \leq \beta(\tau) + \left(\frac{f(\hat{x}_t) - f(\bar{x})}{K}\right)^{1/\omega} \leq \beta(\tau) + \frac{1}{K^{1/\omega}}(L\alpha(\tau) + L\beta(\tau))^{1/\omega},$$
which in view of $\omega \geq 1$, proves the statement. \(\square \)

The preceding corollary presents a result on the global minimizers, which always exist. Recall that \mathcal{F}_t, \mathcal{F} are compact (see (4)). In the next corollary also, the existence of local minimizers for P_t is established.

Corollary 5.2. Let $\bar{x} \in \mathcal{F}$ be a local minimizer of order $\omega \geq 1$ of P such that MPEC-LICQ holds at \bar{x}. Then for any $\tau > 0$ small enough there exist (nearby) local minimizers \bar{x}_t of P_t and (for each of these minimizers) it follows that
$$\|\bar{x}_t - \bar{x}\| \leq \mathcal{C}(\sqrt{\tau}^{1/\omega}).$$

If SC holds at $\bar{x}/\sqrt{\tau}$, can be replaced by τ.

Proof. Let \bar{x} be a local minimizer of P satisfying MPEC-LICQ. Then with some $\delta > 0$ (small enough), \bar{x} is a global solution of the problem restricted to $\mathcal{F}_t \cap B_{\delta}(\bar{x})$. Note that we have chosen a closed ball $B_{\delta}(\bar{x})$ to ensure the existence of a minimizer \bar{x}_t. By Corollary 5.1, the statements follow for the problem restricted to $\mathcal{F}_t \cap B_{\delta}(\bar{x})$, but since $\bar{x}_t \to \bar{x}$ for $\tau \to 0$, the points \bar{x}_t are also elements of the open set $B_{\delta}(\bar{x})$; i.e., \bar{x}_t are local minimizers of the problems P_t. \(\square \)
We emphasize that, in general (without SC), for the minimizer \(\bar{x} \) we cannot expect a faster convergence rate than \(\Theta(\sqrt{T}) \). More precisely, from Lemma 4.2(b) we deduce that at a minimizer \(\bar{x} \) of \(P \) where SC does not hold the following is true with some \(c_2 > 0 \):

\[
\| \bar{x} - \bar{x} \| \geq c_2 \sqrt{T}. \tag{35}
\]

If \(\bar{x} \) is a local minimizer of order \(\omega = 1 \), the optimal convergence rate \(\| \bar{x} - \bar{x} \| \leq \Theta(\sqrt{T}) \) occurs (cf. Corollary 5.2) (optimal, unless SC holds). Recall that generically all local minimizers of \(P \) are either of order \(\omega = 1 \) or \(\omega = 2 \) (see (18)). We give a counterexample for the remaining case \(\omega = 2 \).

Example 5.1.

\[
\min x_1^2 + x_2, \\
\text{s.t. } x_1 \cdot x_2 = 0, \\
x_1, x_2 \geq 0,
\]
i.e., \(r(x) = x_1, \ s(x) = x_2 \). The minimizer \(\bar{x} = (0, 0) \) is of order \(\omega = 2 \) and it is an MPEC-KKT point satisfying the KKT condition \(\nabla f(\bar{x}) = 0 \cdot \nabla r(\bar{x}) + 1 \cdot \nabla s(\bar{x}) \), so the MPEC-SC condition is not fulfilled. Here, the minimizers of \(P \); read: \(\bar{x} = ((\tau/2)^{1/3}, (2\tau^2)^{1/3}) \).

The preceding example (see also Ralph and Wright [13]) shows that at a local minimizer \(\bar{x} \) of Order 2 even under MPEC-LICQ the convergence rate for \(\| \bar{x} - \bar{x} \| \) can be slower than \(\Theta(\sqrt{T}) \). Note, however, that this example is not a generic one since the MPEC-SC condition does not hold. We will now show that in the generic case this bad behavior can be excluded. More precisely, under the conditions MPEC-LICQ, MPEC-SC, and MPEC-SOC at \(\bar{x} \) we prove that the minimizers \(\bar{x} \) of \(P \) are (locally) unique and the (optimal) convergence rate \(\| \bar{x} - \bar{x} \| = \Theta(\sqrt{T}) \) takes place. The proof again makes use of the local transformation of the problem into an equivalent simpler one (cf. §4).

Theorem 5.1. Let \(\bar{x} \) be a local minimizer of \(P \) such that MPEC-LICQ, MPEC-SC, and MPEC-SOC hold. Then, for all \(\tau > 0 \) (small enough), the local minimizers \(\bar{x}_\tau \) of \(P_\tau \) (near \(\bar{x} \)) are uniquely determined and satisfy \(\| \bar{x}_\tau - \bar{x} \| = \Theta(\sqrt{T}) \).

The same statement holds for the global minimizers \(\bar{x} \) and \(\bar{x}_\tau \) of \(P \) and \(P_\tau \), respectively.

Proof. To prove this statement, we again consider the problem \(P_\tau \) in standard form (see §4, (23)),

\[
P_\tau: \begin{array}{ll}
\min & f(x) \\
\text{s.t.} & h_i(x) = x_i \cdot x_{m+i} = \tau, \quad i = 1, \ldots, p, \\
& h_i(x) = x_i \cdot s_{p+i}(x) = \tau, \quad i = 1, \ldots, m-p, \\
& g_i(x) = s_{m+p+i} \geq 0, \quad i = 1, \ldots, q_0, \\
& x_i, s_{m+i} \geq 0, \quad i = 1, \ldots, p, \\
& x_i, s_{p+i} \geq 0, \quad i = p + 1, \ldots, m,
\end{array} \tag{36}
\]

where \(\bar{x} = 0 \) is the local solution of \(P_0 \) with \(s_p(0) = c_i^j > 0, i = 1, \ldots, m-p \). Under MPEC-LICQ, the KKT condition for \(\bar{x} \) reads

\[
\nabla f(\bar{x}) - \sum_{i=1}^{m-p} (\gamma_1^i e_i + \gamma_2^i e_{i+m}) - \sum_{i=1}^{q_0} \gamma_3^j e_{p+i} + \sum_{i=1}^{q_0} \gamma_4^j e_{m+p+i} = 0 \tag{37}
\]

with multiplier vector \((\gamma_1, \gamma_2, \gamma_4) > 0\), by MPEC-SC. So in (36) the function \(f(x) \) has the form

\[
f(\bar{x}) = \sum_{i=1}^{m-p} (\gamma_1^i x_i + \gamma_2^i x_{i+m}) + \sum_{i=1}^{q_0} \gamma_3^j x_{p+i} + \sum_{i=1}^{q_0} \gamma_4^j x_{m+p+i} + q(x), \tag{38}
\]

where \(|q(x)| = \Theta(||x||^2)|\). For convenience, we now introduce the abbreviation \(x^1 = (x_1, \ldots, x_p) \), \(x^2 = (x_{m+1}, \ldots, x_{m+p}) \), \(x^3 = (x_{p+1}, \ldots, x_m) \), \(x^4 = (x_{m+p+1}, \ldots, x_{m+p+q_0}) \), and \(x^5 = (x_m, \ldots, x_n) \) and write \(x = (x^1, \ldots, x^5) \). In this setting, the tangent space at \(\bar{x} \) becomes \(T_{\bar{x}} = \text{span}\{e_i, i = m + p + q_0 + 1, \ldots, n\} \) \((T_{\bar{x}} = C_{\bar{x}} \text{ cf. (17)}\), and MPEC-SOC takes the form

\[
\nabla^2 f(\bar{x}) \text{ is positive definite on } T_{\bar{x}} \text{ or } \nabla^2 f(\bar{x}) \text{ is positive definite.} \tag{39}
\]
and (36) reads

$$P: \quad \min \ (\gamma^1)^T x^1 + (\gamma^2)^T x^2 + (\gamma^3)^T x^3 + (\gamma^4)^T x^4 + q(x)$$

s.t. \ $x_i^1 \cdot x_i^2 = \tau \quad i = 1, \ldots, p,$

\ $x_i^3 \cdot s_{m-p}(x) = \tau \quad i = 1, \ldots, m - p,$

\ $x_i^4 = 0 \quad i = 1, \ldots, q_0.$

Note that by the condition $\gamma^4 > 0$, near \bar{x}, all inequalities $x_i^4 \geq 0$ must be active.

The minimizers \bar{x} of P are solutions of the following KKT system of (40) in the variables (x, λ, μ, ν) (we omit the variable τ),

$$\begin{pmatrix}
\gamma^1 + \nabla_x q \\
\gamma^2 + \nabla_x q \\
\gamma^3 + \nabla_x q \\
\gamma^4 + \nabla_x q \\
\nabla_x q
\end{pmatrix} =
\begin{pmatrix}
x_1^3 \\
\cdot \\
x_p^3 \\
\cdot \\
0
\end{pmatrix} +
\begin{pmatrix}
x_1^3 \nabla_x s_{p+1} + s_{m-p} e_1 \\
\cdot \\
x_m-p \nabla_x s_m + s_m e_{m-p} \\
\cdot \\
0
\end{pmatrix} \lambda -
\begin{pmatrix}
x_1^3 \nabla_x s_{p+1} + s_{m-p} e_1 \\
\cdot \\
x_m-p \nabla_x s_m + s_m e_{m-p} \\
\cdot \\
0
\end{pmatrix} \mu -
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix},$$

$$\lambda -
\begin{pmatrix}
x_1^3 \nabla_x s_{p+1} + s_{m-p} e_1 \\
\cdot \\
x_m-p \nabla_x s_m + s_m e_{m-p} \\
\cdot \\
0
\end{pmatrix} \mu -
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix},$$

$$\lambda -
\begin{pmatrix}
x_1^3 \nabla_x s_{p+1} + s_{m-p} e_1 \\
\cdot \\
x_m-p \nabla_x s_m + s_m e_{m-p} \\
\cdot \\
0
\end{pmatrix} \mu -
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix},$$

$$\lambda -
\begin{pmatrix}
x_1^3 \nabla_x s_{p+1} + s_{m-p} e_1 \\
\cdot \\
x_m-p \nabla_x s_m + s_m e_{m-p} \\
\cdot \\
0
\end{pmatrix} \mu -
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix},$$

\begin{align}
& \gamma^1 := \gamma^1 + \nabla_x q - [x_1^3 \nabla_x s_{p+1} \cdots x_m-p \nabla_x s_m] \mu,
& \gamma^2 := \gamma^2 + \nabla_x q - [x_1^3 \nabla_x s_{p+1} \cdots x_m-p \nabla_x s_m] \mu,
\end{align}

and note that due to $\gamma^1, \gamma^2 > 0$ and $|q(x)| = \mathcal{O}(\|x\|^2)$, near $\bar{x} = 0$, the vectors satisfy $\hat{\gamma}^1, \hat{\gamma}^2 > 0$. So near $\bar{x} = 0$ the functions

$$\sqrt{\hat{\gamma}^1 / \hat{\gamma}^2} \quad \text{and} \quad \sqrt{\hat{\gamma}^2 / \hat{\gamma}^1}$$

are C^1-functions of x. From the system we deduce $\hat{\gamma}^1_i = x_i^2 \lambda_i$, $\hat{\gamma}^2_i = x_i^1 \lambda_i$, and $\hat{\gamma}^1_i \hat{\gamma}^2_i = \tau(\lambda_i)^2$ or $\lambda_i = \sqrt{\hat{\gamma}^1_i \hat{\gamma}^2_i / \tau}$ and finally

$$x_i^1 = \sqrt{\hat{\gamma}^1_i / \hat{\gamma}^2} \cdot \sqrt{\tau}, \quad x_i^2 = \sqrt{\hat{\gamma}^1_i / \hat{\gamma}^2} \cdot \sqrt{\tau}.$$
The Relation (41) represents a system \(F(x, \mu, \tau) = 0 \) of \(n + m - p \) equations in \(n + m - p + 1 \) variables \((x, \mu, \tau)\). The point \((\bar{x}, \bar{\mu}, \bar{\tau})\) with \(\bar{x} = 0, \bar{\tau} = 0, \) and \(\bar{\mu} = (\gamma^1_i/s_{p+1}(\bar{x}), \ldots, \gamma^m_{m+p}/s_m(\bar{x})) \) (recall \(s_i(\bar{x}) > 0 \)) solves (41). The Jacobian with respect to \((x, \mu)\) at this point \((\bar{x}, \bar{\mu}, \bar{\tau})\) has the form

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
X & X & X & X & X \\
0 & 0 & X & 0 & \nabla^2_x q \\
0 & 0 & [s_{p+1} & \cdots & s_m] \\
0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\((X\) is some matrix of appropriate dimension; recall \(\nabla_x q(\bar{x}) \) is positive definite (cf. (39)) and \(s_i(\bar{x}) > 0, i = p + 1, \ldots, m, \) we see that this matrix is regular. Therefore, we can apply the Implicit Function Theorem to the equation \(F = 0 \), which near \(\bar{\tau} = 0 \) yields a unique solution \(x(\tau), \mu(\tau) \) differentiable in the parameter \(\sqrt{\tau} \). This implies \(x(\tau) = \bar{x} + \mathcal{O}(\sqrt{\tau}) \mu(\tau) = \bar{\mu} + \mathcal{O}(\sqrt{\tau}) \). Substituting this solution \(x(\tau), \mu(\tau) \) into the Equation (42) determines the variable \(\nu(\tau) \). Since the (local) minimizers \(\bar{x}_\tau \) of \(P_\tau \) must solve the systems (41), (42), clearly \(\bar{x} = x(\tau) \) is uniquely determined. The unique multipliers \(\nu(\tau) \) corresponding to \(x^j_i = 0, \mu_i(\tau) \) belonging to \(x^j_i, x^j_2 \). This proves the statement for the local minimizers.

If \(\bar{x} \) is a global minimizer, we can argue as in the second part of the proof of Corollary 5.2. First, by restricting the minimization to a neighborhood \(B_\epsilon(\bar{x}) \), the result follows as above. The compactness assumption for \(P_\epsilon \) and the fact that \(\bar{x} \) is a global minimizer (of order \(\omega = 2 \)) exclude global minimizers \(\bar{x}_\tau \) of \(P_\epsilon \) outside \(B_\epsilon(\bar{x}) \). □

In the next remark, we indicate that the result of Theorem 5.1 is also true for \(C \)-stationary points.

Remark 5.1. Let \(\bar{x} \) be a feasible point of the complementarity constrained problem \(P \). It is called \(C \)-stationary point if the Condition (10) holds with some multiplier \((\gamma, \rho, \sigma)\), satisfying \(\gamma_j \geq 0, j \in J(\bar{x}) \) and \(\rho_i \cdot \sigma_i \geq 0, i \in I_\tau(\bar{x}) \) (see, e.g., Scheel and Scholtes [14]). If MPEC-LICQ holds at \(\bar{x} \), the multiplier is uniquely determined. In this case, we define

\[(\text{MPEC-SC}): \gamma_j > 0, j \in J(\bar{x}), \quad \rho_i \cdot \sigma_i > 0, i \in I_\tau(\bar{x}).\]

\[(\text{MPEC-SOC}): d^T \nabla^2_\tilde{x} L(\bar{x}, \gamma, \rho, \sigma)d \neq 0, \quad \forall d \in C_\tilde{x}[0].\]

The genericity result in Theorem 3.1 then also holds for \(C \)-stationary points:

Generically, in \(C_\tilde{x} \) at all \(C \)-stationary points of a problem \(P \) the conditions MPEC-LICQ, MPEC-SC\(^\star\), and MPEC-SOC\(^\star\) hold.

By modifying the proof of Theorem 5.1 in an obvious way (use \(\gamma^1_j, \gamma^2_j > 0 \) instead of \(\gamma^1_j, \gamma^2_j > 0 \), etc.) the statement of Theorem 5.1 is also true for \(C \)-stationary points:

Let \(\bar{x} \) be a \(C \)-stationary point of \(P \) such that MPEC-LICQ, MPEC-SC\(^\star\), and MPEC-SOC\(^\star\) hold. Then for all \(\tau > 0 \) (small enough) there exist (locally) unique stationary points \(\bar{x}_\tau \) of \(P_\tau \) and \(\|\bar{x}_\tau - \bar{x}\| = \mathcal{O}(\sqrt{\tau}) \). Note that \(C \)-stationarity is a weaker concept than the concept of local minimizers. As shown (e.g., in Scheel and Scholtes [14]) under a certain MFCQ assumption at \(\bar{x} \) (which is weaker than MPEC-LICQ), any local minimizer of \(P \) is necessarily a \(C \)-stationary point. Moreover, the limit points of a sequence of minimizers \(\bar{x}_\tau \) of \(P_\tau \) (for \(\tau \to 0 \)) are typically \(C \)-stationary points of \(P \).

We end up with some further observations.

Remark 5.2. Let us note that from the results of this paper we also can deduce the convergence results of Ralph and Wright [13] for the relaxation \(P_\epsilon^{\text{rel}} \) of §1 (under the stronger MPEC-LICQ condition).

Suppose we have given a local solution \(\bar{x} \) of \(P \) such that MPEC-LICQ holds, and with a corresponding KKT-solution MPEC-SC, MPEC-SOC is satisfied (i.e., by Theorem 3.4 \(\bar{x} \) is a minimizer of order \(\omega = 2 \)). In view of Corollary 3.1, it is also a solution of the relaxed problem \(P_{\epsilon}(\bar{x}) \) in (19), and by using MPEC-SC it follows that
for the solutions \hat{x}_r of P^τ_μ (near \bar{x}) (see §1) the conditions $r_i(x)s_i(x) \leq \tau$, $i \in I_{r_i}(\bar{x})$ are not active, but that for all $\tau > 0$ small enough

$$r_i(\hat{x}_r) = s_i(\hat{x}_r) = 0, \quad \forall i \in I_{r_i}(\bar{x})$$ \hfill (43)

holds. So to analyze the behavior of the solution \hat{x}_r the whole analysis can be done under the Condition (43); i.e., we are in the situation as for the case that the strong SC-condition holds. So instead of the convergence $\Theta(\sqrt{\tau})$ (cf. e.g. Lemma 4.2) we obtain a rate $\Theta(\tau)$; in the same way, the analysis in §5 simplifies, resulting in a convergence behavior $\|\hat{x}_r - \bar{x}\| = O(\tau)$.

Remark 5.3. We wish to emphasize that the convergence results of this paper can be generalized in a straightforward way to problems P^τ_μ containing constraints of the product form

$$r_1(x)r_2(x) \cdots r_\mu(x) = 0, \quad r_1(x), r_2(x), \ldots, r_\mu(x) \geq 0.$$

Here, at a solution \bar{x} of P^τ_μ, where all constraints r_i are active, i.e.,

$$r_i(\bar{x}) = r_1(\bar{x}) = \cdots = r_\mu(\bar{x}) = 0,$$

a perturbation $r_1(x)r_2(x) \cdots r_\mu(x) = \tau$ will lead to a convergence rate

$$\|\hat{x}_r - \bar{x}\| \approx O(\tau^{1/\mu})$$

for the solutions \hat{x}_r of the perturbed problem. Also, all other results in the present paper can be extended in a straightforward way to this generalization.

Acknowledgments. The authors thank the referees for their many valuable comments.

References

