Noise propagation path identification of variable speed drive in time domain via common mode test mode

D. Zhao*, J.A. Ferreira*, H. Polinder*, A. Roc’h**, and F.B.J. Leferink***
* Delft University of Technology, Mekelweg 4, 2628CD, Delft, The Netherlands
** University of Twente, Enschede, P.O. Box 217, 7500 AE Enschede, The Netherlands
*** Thales Netherlands, Hengelo, P.O. Box 42, 7550 GD Hengelo, The Netherlands
E-Mail: d.zhao@ewi.tudelft.nl

Acknowledgements
This work is an IOP (Innovative Research Project) project financed by the Dutch Ministry of Economic Affairs.

Keywords
EMC/EMI, variable speed drive, voltage source inverter

Abstract
Electromagnetic Compatibility (EMC) debugging of power electronics systems depends heavily on the experience of specialists due to the complex mechanisms of electromagnetic noise. In this paper, the time domain approach is used instead of the conventional frequency domain method to identify noise propagation path. The proposed test mode switches the upper or lower transistors of the converter legs simultaneously on and off at a 50% fixed duty ratio. It is called common mode test mode. Because there is no significant functional current flowing, the differential mode noise is minimized and the remaining common mode noise and mixed mode noise are maximized. Therefore, the common mode noise in this test method gives its upper boundary of Electromagnetic Interference (EMI) level when the system is normal operated. A motor drive system is measured to show how this test mode works.

Introduction
Electromagnetic compatibility is an unavoidable requirement for most power electronic applications. It is well known that the EMI is the common result of the high $\frac{dv}{dt}$ and $\frac{di}{dt}$ caused by power semiconductor devices. Through different mechanisms, it presents as common mode (CM) noise and differential mode (DM) noise. In [1], the DM noise is also named as intrinsic-differential-mode (IDM) noise to distinguish from the recently defined mix mode (MM) noise which is a kind of DM noise but it is caused by the unevenly distributed CM current [2]. These complex mechanisms take effect simultaneously in the power electronics system. Understanding and solving the EMI issue rely heavily on experience of specialists.

Certain EMI regulations, such as EN61800-3, define the limitation line that drive converters have to meet. The limitation requirements are usually given in frequency spectrum and therefore, most analyses are also done on the frequency-domain. The analysis in the frequency-domain is very useful to derive and simplify models. At the same time, it also presents some drawbacks because it doesn’t give enough insight on the mechanism and propagation of the EMI. The measurement results in the frequency domain give us the false impression, that the EMI signal is periodic. Actually, from the time-domain measurement, the noise shows periodicity only in a short time interval. In different time intervals, the amplitude is not fixed. One example is given in Fig. 1, the noise level measured by Line Impedance Stabilization Network (LISN) presents different levels besides the 50Hz ripple during a positive half period of the mains frequency. The time-domain approach can provide complementary information missed by the frequency domain approach.
In time domain approach, for easier observation and analysis, the drive is set to work under a certain test mode. We expect these characteristics for the selected test mode:

- It can be realized by software or signal generator easily.
- Effects generated by some mechanisms are minimized. That simplifies the analysis. The remaining effects are maximized for easier observation.

In [1], three coupling path models are identified in time domain for a single-phase diode rectifier half-bridge converter. For a three-phase diode front-end converter, the EMI propagation is more complex. In [2], the diode conduction patterns are analyzed. The time-variant frequency spectrum is verified by zero-span function of a spectrum analyzer. In this paper, the voltage method used to identify the coupling modes in [1] is replaced by the current probe method [3], and the EMI propagation paths for the 3-phase converter are identified in the time-domain. The drive system runs in a special test mode, so that the complexity to analyze the three-phase system is reduced. In this test mode, the gate signals for different phase poles turn on and turn off synchronously in carrier frequency. The duty ratio is fixed at 50%. The gate signals for three phase inverter are shown in Fig. 2.

![Gate signal used for CM test mode](image)

Fig. 1 The EMI voltage of a motor drive measured via LISN, of phase L1

![Gate signal used for CM test mode](image)

Fig. 2 Gate signal used for CM test mode

Experimental plant description

In Fig. 3, the experimental plant configuration is illustrated. It is a typical PWM drive system. The power circuit is an industrial IGBT converter which is produced by Danfoss (VLT5016) with diode rectifier. It feeds a 7.5kW induction motor operating at 30Hz. The carrier frequency is 8 kHz. An interface board from Aalborg University replaces the slot for the original control board and translates the PWM signal into the gate signal for drive circuit with dead-time and protection functions. The external PWM signal is provided by an EzDSP board produced by Digital Spectrum (eZdspF2808). It gives flexibility of arbitrary PWM signal generation. Vissim is used for programming and the running code can be generated and downloaded to eZDSP board. To get galvanic isolation, plastic optic fibers are used to connect interface card with the PWM DSP board.
All the CM filtering components and some of the DM filtering components are removed before the measurement. The remaining DM filtering components including DC capacitor cannot be removed because of their functionality. The whole drive including motor and LISN are placed on two pieces of brass plates connected by a brass strip.

Noise source

The switching transient is the main source of CM current. With the output voltage abruptly changing from low to high, the CM current is flowing from the inverter terminal to the motor cable to charge the parasitic capacitor between the cable and the reference plate, and the capacitor between the motor winding and the ground. A positive pulse is expected in this transient. In the fall edge of output voltage, the negative pulse current is generated by discharging these parasitic capacitors.

In CM test mode, the three poles of the inverter are set to be switched at the same time. Overlaps are expected which make the amplitude of CM current three times higher. Although slight phase shifting exists between different switching poles, the DM current generated is much lower than when the motor runs in normal operation. The DM current is also filtered by the DC capacitors when it is propagating to the line side. Therefore, the DM current is negligible compared to the CM current in the line side of the converter in this test mode.

In Fig.4, the measurement shows clearly this causality. The CM current is brought about by the switching action. When two poles of inverter switch simultaneously, the amplitude of CM current is doubled as Fig.4 (a) shows. While more frequently, the overlap does not occur, like Fig.4 (b) illustrates. A higher resonant frequency of 2.2MHz can be recognized in this figure. Another lower resonant frequency also appears around 60 kHz which is shown in Fig. 4(c).

Actually, due to the limitation of DSP’s calculating speed and the gate drive delay-induced error [4], the transition of the phase voltages have a variable delay time between each other. A typical delay between phases is varying in a range of 260ns. Therefore, the overlap occurs all the time for the resonance of 60 kHz because the period of the resonance is much longer than the deviation of delay. For the resonant signal of 2.2MHz, the overlap occurs occasionally but not all the time.
The CM current is generated in the inverter output side and propagated to the line side. We use two current probes to measure the current in the line side of the converter. Using the different wiring configurations depicted in Fig. 5, we get two measurement results. I_{CM1} is the common mode current in the line side of the inverter. I_{DM1-L1} is the differential mode current in the line side of the inverter. As said previously, the DM current is ignorable when the converter operates in common mode test mode. Therefore, the measured current I_{DM1-L1} is actually the MM current.

\[I_{L1} + I_{L2} + I_{L3} = 3I_{CM1} \]

\[2I_{L1} - I_{L2} - I_{L3} = 3I_{DM1-L1} \]

The test result is presented in Fig. 6 (a). To get more details, we zoom in for the different scenarios, as shown in Fig. 6 (b)-(d).

By observing these figures, the features are summarized below for different scenarios.
Table I: The relation between I_{CM1} and $I_{DM,L1}$ in different scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Relation between I_{CM1} and $I_{DM,L1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>$I_{DM,L1} = - I_{CM1}$</td>
</tr>
<tr>
<td>#2</td>
<td>$I_{DM,L1} = \sqrt{2} I_{CM1}$</td>
</tr>
<tr>
<td>#3</td>
<td>$I_{DM,L1} = 2 I_{CM1}$ and $I_{DM,L1} = - I_{CM1}$ by turns</td>
</tr>
<tr>
<td>#4</td>
<td>$I_{DM,L1} = 0.8 I_{CM1}$</td>
</tr>
</tbody>
</table>

Table II: The relation between I_{CM1} and V_{LISN} in different scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Relation between I_{CM1} and V_{LISN}</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>$V_{LISN} = 0$</td>
</tr>
<tr>
<td>#2</td>
<td>$V_{LISN} = 25 I_{CM1}$</td>
</tr>
<tr>
<td>#3</td>
<td>$V_{LISN} = 50 I_{CM1}$ and $V_{LISN} = 0$ by turns</td>
</tr>
<tr>
<td>#4</td>
<td>$V_{LISN} = 30 I_{CM1}$</td>
</tr>
</tbody>
</table>

Via the observation of the relationships between the waveforms, as tabulated in Table I and Table II, we know directly how the diode conduction patterns correspondent to the scenarios we measured.

Scenario 1 happens when diode pair D2/D3 or diode pair D5/D6 pair are conducted. The CM current would not flow through D1 or D4, the LISN in phase L1 would not detect the noise.
Scenario 2 is also a very familiar situation, when the diode pair D1/D2, or D3/D4, or D4/D5, or D6/D1 are conducted. The CM current ripple is superimposed on the rectifier input DM current.

Scenario 3 is recently introduced by [1], [2], and [5]. At the moment when the gate signal turns on the upper switch or turns off the lower switch, the inverter terminal U’ is still in low voltage potential because of the parasitic capacitor. The D1 is conducted by this positive bias voltage. D2 or D6 are reverse biased because the voltage in DC bus capacitor clamps the potential of their anodes lower than the potential of their cathodes. Therefore, the current flows only through L1. The loop of the CM current is illustrated in Fig. 7 below. A similar situation happens when the gate signal turns off the upper switch or turns on the lower switch, the inverter terminal U’ is equal to the potential of positive DC bus. That makes all the current flowing through L2 or L3, while keeps the D1 reverse biased. One notes that the MM mode will disappear when X capacitors are installed. That causes the current to be located evenly between the phase lines. Because the value of X capacitor is limited, there is always more or less unbalance. Therefore, MM needs to be considered especially in low frequency.

The scenario 4 is observed in the transit time between the scenario 2 and the scenario 3. It is marked in Fig.6 (c). This scenario happens when the only conducted diode is handing over part of the CM current to another diode which is becoming conducted.

![Fig. 7 The loop of CM current of scenario 3](Image)

In the measured waveforms, we also found that the CM noise presents a replicated ripple shown in Fig.6 (a). The period of the ripple is right the interval of 1/6 mains voltage period. That confirms that the CM current is generated by voltage transient and is proportional to this transient voltage change ratio.

Upper boundary for EMI

The common mode test mode is used in the last section to identify the noise propagation path successfully. Because the DM noise is minimized, the complexity of the analysis is reduced. Here, another interesting usage of common mode test mode is finding the upper boundary of common mode noise when converter operates normally. That is because that the CM noise is maximized in CM test mode. As we indicated in Fig. 4, in the CM test mode, the three inverter leg switching is synchronized. The overlap is expected for the frequency range below 150 kHz. In this frequency range, the delay error of switches is far short than the noise period.

Notice from the measurement result shown in Fig. 8 (a), in the frequency range between 30 kHz till 150 kHz, the level difference between CM test mode and normal operation is around 9dB. That is as expected: $20 \times \log_{10}3 = 9.5$dB, because the total level is tripled compare to normal operation.

For the frequency range between 1MHz-10MHz, the noise is determined by the on/off transitions of switches. In CM test mode, because no functional current is established, the load current is quite low. Therefore, the dv/dt of the transistor turn off is very small. The duration of turn off transit is even longer than the deadtime. That makes that the terminal voltage is driven to the bus voltage rapidly by the complementary IGBT turning on each time the dead time has expired. The waveform of this turn
off is given in Fig. 9. Therefore, in CM test mode, the dv/dt of noise source has fast slopes in both transients of turn-on and turn-off. Compare with normal operation mode, the dv/dt is high in turn on and low in turn off, the EMI level of the CM test mode is $20 \times \log_{10} 2 = 6$ dB higher, that is consistent with the measurement result given in Fig. 10.

![Fig. 8 The EMI measured by LISN when motor in normal operation and CM test mode (9kHz-150kHz)](image1)

![Fig. 9 The IGBT turning off follows by turn on of complementary IGBT in CM test mode (500ns/div) CH1: voltage between output terminal and negative DC bus (100V/div) CH2: phase current (0.5A/div) CH3: current of upper switch (IGBT+diode) (0.5A/div) CH4: gate signal of upper IGBT (5V/div)](image2)
Fig. 10 The EMI measured by LISN when motor in normal operation and CM test mode (150kHz-30MHz)

Conclusion

In this paper, the CM test mode is defined and used to identify the noise propagation path. There are three reasons for our interest in the CM test mode.

1. It is easy to implement, and can be applied in site after the installation.
2. The DM noise is minimized, that makes the analysis and measurement simpler.
3. The CM and MM noise is maximized. That gives the “worst situation” and upper boundary of the EMI noise when the test unit is in normal operation.

A suggestion is adding the CM test mode in the software and using it to choose correct suppression components.

References